
Mockup-Supported Web Requirements Engineering

 Jia Zhang Konstantin Läufer Zhiguo Gong
 infiNET Solutions Department of Computer Science Faculty of Science and Technology
 1425 E. Busch Parkway Loyola University Chicago University of Macau
Buffalo Grove, IL 60089, USA Chicago, IL 60626, USA P.O. Box 3001 Macao, PRC
jiazhangchicago@yahoo.com laufer@acm.org fstzgg@umac.mo

Abstract

Requirements engineering for web applications entails
new demands, compared to traditional software
applications. This paper proposes a mockup-driven fast-
prototyping methodology to help elicit and finalize system
requirements, as well as facilitate adjustments to quickly
changing user requirements typical of web applications.
This strategy minimizes the risk of wasting valuable
development efforts because of ambiguous or incomplete
requirement specifications.

1. Introduction

The emerging term web requirements engineering
(WRE) refers to requirements engineering activities
specific for web applications. In the broadest sense, a web
application is an application accessible through the
Internet. Because of the distinctive features of web
applications as compared to traditional software
applications [4][6], web application development usually
starts from ill-structured or vague requirements [3]. In
addition, web applications constantly change their
requirements so as to meet the volatile demands from the
market. Consequently, WRE entails new demands. The
last decade has witnessed numerous comprehensive
notations, models, and methodologies that have been
introduced in the requirements engineering (RE) field;
however, little attention has been paid to methodologies
coping with requirements elicitation and finalization
specific to web applications [1]. Our goal is
synergistically to apply proven concepts in RE to web
applications, in order to provide an efficient methodology
for WRE. In this paper, we propose a mockup-driven fast-
prototyping methodology (MODFM) to help elicit and
finalize system requirements, as well as facilitate
adjustment to quickly changing user requirements typical
to web applications.

The rest of this paper is organized as follows. In
Section 2, we discuss related work. In Section 3, we
present enhancements to our web system generator. In
Section 4, we introduce our mockup-driven fast-
prototyping methodology. In Section 5, we discuss and
evaluate our methodology. In Section 6, we summarize

the contribution and innovation of MODFM, discuss
assessments, and describe future work.

2. Related Work

There has been a considerable amount of research in
RE. Among the variety of research achievements, four of
the most promising RE approaches form a solid
foundation for WRE: fast prototyping, structured analysis,
use case methodology, and architecture-driven
requirements engineering. Szekely defines the concept of
fast prototyping as constructing a small-scale version of a
complicated system in order to acquire critical knowledge
required to build a full system [11]. This prototype not
only provides clients with a complete picture of what the
final product will be, but it also facilitates requirements
validation, elicitation, and revision. Since its inception in
1970s and 1980s, structured analysis has been considered
as a powerful and natural approach to analyze
complicated software application requirements [13]. The
use case approach [8], originally proposed by Jacobson
and colleagues, utilizes a scenario-driven mechanism and
has been extensively adopted and widely considered as
the most popular requirements elicitation technique in
industry [10]. Software Architecture Based Requirements
Engineering (SABRE) [2] aims at bridging between
software architecture (SA) and RE; which core concept is
that SA supports RE whilst RE helps firm up SA as a
high-level solution. SABRE concentrates on utilizing a
function-class decomposition in order to identify and
validate user requirements incrementally.

Our previous research resulted in a structured software
architecture for J2EE-oriented [9] web applications [14].
A web application system can be organized as a collection
of functional modules, and each module can be in turn
divided into a list of interacting mini-modules. Each mini-
module can be implemented as a tiny web application
consisting of a set of components, which can be structured
into a front-end tier and a back-end tier. These two tiers
represent web presentation and business logic,
respectively, each exhibiting a Model-View-Controller
structure [5]. According to this architecture, any module
in a web application can be realized by the composition of
JSP pages, form beans, pre-actions, post-actions, service
methods, EJB components, and database schemas. As a

result, automatic code generation becomes highly
practical.

3. Web System Generator (WSG)
Our structured architecture makes it reasonable and

feasible to apply automatic code generation to web
application development. Our previous research thus
resulted in a J2EE-oriented web system generator (WSG)
[15][16]. Three types of files must be provided by users:

data files define the data models that can be applied to
template file(s) to generate target file(s); template files
themselves are code files that contain tags that need to be
replaced at generation time by the corresponding values
from data files; and configuration files specify the many-
to-many relationships between the former two as well as
the criteria of generation. Both data files and

Figure 2. Generated JSP page for Figure 1

<WGenerator>
 <OBJ NAME="ECheckPaymentProfile" TNAME="echeck_profile">
 <ATTR ATNAME="Key" ATYPE="String" UNIQ="YES"/>
 <ATTR ATNAME="HolderName" ATYPE="String"
VALID="YES"/>
 <ATTR ATNAME="AccountType" ATYPE="String"
VALID="YES"/>
 <ATTR ATNAME="RoutingNum" ATYPE="String"
VALID="YES"/>
 <ATTR ATNAME="AccountNum" ATYPE="String"
VALID="YES"/>
 <ATTR ATNAME="EmailAdd" ATYPE="String" VALID="YES"
 COMMENTS=”Has to be valid email address”/>
 <ATTR ATNAME="DayPhone" ATYPE="String" VALID="YES"/>
 <ATTR ATNAME="NightPhone" ATYPE="String" VALID="YES"/>
 <ATTR ATNAME="AddressLine1" ATYPE="String" UNIQ="NO"
 COMMENTS=”1. if the address is a domestic US address:

 a) address line 1 should not be empty;
 b) address line 2 is optional;

 c) city, state, zip code can not be empty;
 d) zip code should be format of either "ddddd" or
"ddddd-dddd", while each "d" represents a digit;

 2. if the address is a foreigh address:
 a) address line 1 should not be empty;
 b) address line 2 is optional;

 c) city can not be empty;
 d) state, zip code are optional;”/>
 <ATTR ATNAME="AddressLine2" ATYPE="String" UNIQ="NO"/>
 <ATTR ATNAME="City" ATYPE="String" UNIQ="NO"/>
 <ATTR ATNAME="State" ATYPE="String" UNIQ="NO"/>
 <ATTR ATNAME="Country" ATYPE="String" UNIQ="NO"/>
 <ATTR ATNAME="ZipCode" ATYPE="String" UNIQ="NO"/>
 </OBJ>
</WGenerator>

configuration files are XML files. Seamlessly integrated
with the architecture described above, WSG offers a
J2EE-oriented template system. As a result, for every
unit-level functional requirement, one merely needs to
provide data models and some criteria; and the WSG will
generate a running unit with all related code from the
front-end to the back-end.

Here, we enhance WSG to include support for
requirements elicitation. Figure 1 illustrates an enhanced
data file of a user’s payment profile of electronic check.
Once a user defines his payment profile, he can utilize the
profile to pay bills without re-typing all related
information. For each item of the corresponding data
model, one can define the item’s name and data type.
ECheckPaymentProfile contains fourteen data items:
holder name, account type, routing number, account
number, email address, day time phone number, evening
phone number, address line 1, address line 2, city, state,
country, and zip code. The data item key is used to store
the primary key internally. Detailed information about the
specification rules for each item can be found in [14]. It
should be noted that we provide the ability for users to
specify comments on data items. As shown in Figure 1,
two data items are associated with comments: email
address and address line 1. Comments of the former item
say that email address had to be valid email address;
comments of the latter item declare the validation rules
for address.

We also enhance the JSP page generation accordingly.
If one data item is associated with comments, a clickable
link with word “Comments” will be shown beside the
data item on the generated page. If a user clicks on the
link, a window will pop up displaying the comments
defined in the corresponding data file. Taking Figure 1 as
an example, Figure 2 shows its corresponding generated
JSP page. It can be seen that there are two links next to
the email address and address line 1, respectively; each
link is in blue color. Figure 2 also illustrates the window
popped up when the link next to address line 1 is clicked.
This window contains exact information defined in Figure
1 as comments of data item address line 1, which is the
validation rule for address.

This enhancement facilitates WSG to serve for
requirements elicitation. In the process of RE, it is
normally sufficient to define business rules in informal
language or even natural language. This enhancement
enables business rules to be associated with
corresponding data items on the web page, so that not
only clients can review the rules, but also developers can
implement these rules and replace the comments
accordingly.

4. Mockup-driven Fast-prototyping
Methodology (MODFM)

On the basis of our structured web system architecture
and web system generator (WSG), we propose a mockup-
driven fast-prototyping methodology (MODFM) serving
for WRE. According to The American Heritage
Dictionary, a mockup is “a usually full-sized scale model
of a structure, used for demonstration, study or testing”
[7]. In this paper, a mockup refers to a running, navigable,
partial or full-sized model of a web application, used for
requirements elicitation, validation, and finalization.
Meanwhile, MODFM is applicable to a web application if
the application satisfies the following four assumptions.
First, the application is a typical web application, which is
navigable through a set of web pages. Second, the
application can be decomposed into modules exhibited by
a hierarchical menu system. In other words, all the web
pages can be organized into a menu system. Third, the
project at least starts with a very high-level functional
description of the system. Fourth, the hierarchy of the
menu system is no greater than three. In addition, we
assume that a test server has already been set up so that all
mockups can be deployed to the test server, while clients
can test the mockups and provide feedback remotely.

The essential tenet of MODFM is always to use a
running mockup system to elicit and validate user
requirements. This iterative process applies a top-down
approach to decompose system functionalities to web
pages while simultaneously generating navigable running
mockup system, with functionalities organized by menu
system. Figure 3 summarizes this iterative process. A
module acts as the container for a list of web pages that
exhibit high cohesion and low external coupling. In a
typical web application, a module is normally realized as
a menu item. Functional decomposition tasks consist of
identifying menu items and sub-items, and organizing
them in a menu system. Scenario analysis tasks consist of
identifying web pages, finding out the navigational
relationship among pages, and allocating pages to
appropriate menu item. Mockup construction then occurs
bottom up.

Figure 3: Mockup-Driven Fast-prototyping Methodology Algorithm

1. Functionally decompose the system into menus.
Every menu item is identified as one web page. It
can be as simple as a “Hello world” page.

2. Generate a mockup containing only menu system
and dummy pages into a released version.

3. Deploy the mockup to test server. Go back to step
1 if client would like some changes; otherwise go
to step 4.

4. Iterate on every menu item step 4 through 7. If
finished, go to Step 8.

5. Develop scenarios of each menu item page.
Identify a list of pages, gather page information,
and record the business logic between pages.

6. Generate a mockup, with business logic displayed
on every page as written document.

7. Deliver the mockup to client. Go back to step 5 if
client would like some changes; otherwise jump
to step 4.

8. Deliver the mockup to developers.

5 Evaluation of MODFM

Here we seek to provide efficient support for the end-
to-end process of generating and eliciting web
requirements. In contrast with previous approaches, we
accomplish this objective by providing a generic
framework to support generating a running mockup
application and by using automatic code generation
techniques that exploit state-of-the-art tools and
technologies for web development.

Building mockups as system prototypes for
requirements engineering has several advantages. First,
the mockup helps elicit and finalize the system
requirements. Second, clients can view the visual layout
of the final system at extremely early stages. Third, since
a mockup will become the skeleton of the final system,
even requirements elicitation work will not be wasted.
Fourth, the mockup can be reused by other similar
applications since they do not involve coding application
logic. Fifth, constructing the mockup blends functional
decomposition [12] with object-oriented design
principles.

MODFM offers three compelling features: short
release cycles, incremental requirements elicitation, and
suitability for non-technical analysis. The mockup starts
out as a menu system only, and incrementally adds new
pages and scenarios. Clients can get involved in this
process at any time. The web system generator makes
extremely short release cycles practical. In addition, with
the assistance of the web system generator, the mockup
can be generated by a non-technical person who knows
nothing about Java programming. In general, MODFM is
extreme in the sense that it takes four well-known
requirements engineering concepts and "best practices" to
their logical extremes -- turning them all up to "10". This
early, incremental, and client-focused approach is
expected to reduce project risks considerably.

We have tested the MODFM on three industrial web
applications. The first one is an e-hospital service suite
that allows users to customize a new hospital web site at
run time, as well as provides to hospitals with web-based
capabilities such as managing accounts, administrations,
notifications, etc. The second one is an e-university
administrative system that encompasses modules such as
student records, admissions, financial aid, financial
services, registration, payment management, faculty, etc.
The third one is an e-payment system that supports on-
line electronic payments, including functionalities such as
both e-check and credit card payment, bill presentment as
both paper bill and PDF format, bill loading, and payment
history presentment, etc. We believe that MODFM
possesses high potential in the software industry,
specifically in the area of web application development.
Based on our experiences, MODFM promises more
complete and accurate requirements gathering, more

client satisfaction, and more efficient human resource
usage.

6. Contributions, Assessments, and Future
Work

MODFM improves the efficiency of requirements
elicitation for web applications. This is accomplished by
utilizing a structured J2EE-oriented architecture and web
system generator. MODFM guarantees to deliver running
web applications by incrementally eliciting, validating,
and finalizing user requirements early and consistently;
consequently, MODFM reduces the cost of nearly
inevitable changes to business rules, programming
environment, or software design. Many of these practices
have been part of conventional wisdom for years, such as
fast-prototyping, use case analysis, and SABRE; but
rethinking their interaction in the context of web
application development is the value of MODFM.

The efficiency and effectiveness of MODFM rely on
our architectural model and web system generator; both
techniques are J2EE-oriented. Hence, if the web
technology changes significantly, these two techniques
need to be upgraded accordingly. However, we believe
that the concept and approach of MODFM is widely
applicable; therefore it can be fully reused by future web
applications, based on J2EE or other enterprise
application platforms, as long as a corresponding
platform-specific web system generator is plugged in.

Our future work will include an Interactive
Development Environment (IDE) in order to support
MODFM for non-technical analysts. Meanwhile, we plan
to conduct more case studies, so as to test the
effectiveness and efficiency of MODFM over different
types of web applications.

7. References

[1] D. Bolchini and P. Paolini, “Capturing Web Application
Requirements through Goal-Oriented Analysis”, The 5th
Workshop on Requirements Engineering, Valencia, Spain, Nov.
11-12, 2002.
[2] C.K. Chang, J.C. Huang, S. Hua, and A.K. Combelles,
“Function-class Decomposition: A Hybrid Software Engineering
Method”, IEEE Computer, Dec. 2001, pp. 87-93.
[3] L.L. Constantine and L.A.D. Lockwood, “Usage-centered
Engineering for Web Applications”, IEEE Software, Mar./Apr.
2002, pp. 42-50.
[4] Deshpande, Y. and Hansen, S, “Web Engineering: Creating a
Discipline among Disciplines”, IEEE Multimedia, Apr.-Jun.
2001, pp. 82-87.
[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns, Addison Wesley 1994.
[6] A. Ginige and S. Murugesan, “The Essence of Web
Engineering – Managing the Diversity and Complexity of Web
Application Development”, IEEE Multimedia, Apr. 2001, pp.
22-25.

[7] The American Heritage Dictionary of the English Language,
4th edition, Copyright 2000 by Houghton Mifflin Company,
Published by Houghton Mifflin Company.
[8] I. Jacobson, M. Christerson, P. Jonsson, and G.
Overgaard, Object Oriented Software Engineering – A
Use Case Driven Approach, Addison-Wesley, 1992.
[9] http://java.sun.com/j2ee.
[10] W.J. Lee, S. D. Cha, and Y. R. Kwon, “Integration and
Analysis of Use Cases using Modular Petri Nets in
Requirements Engineering”, IEEE Transactions on Software
Engineering, vol. 24, no. 12, Dec. 1998, pp. 1115-1130.
[11] P. Szekely, User Interface Prototyping: Tools and
Techniques, USC/Information Sciences Institute, 1994.
[12] R. Wieringa, “A Survey of Structured and Object-Oriented
Specification Methods and Techniques”, ACM Computing
Surveys, Dec. 1998, pp. 459-527.
[13] E. Yourdon, Modern Structured Analysis, Yourdon Press,
Upper Saddle River, N.J., 1989.
[14] Jia Zhang and Ugo Buy, “An Approach to Develop Web
Applications”, the 8th IEEE Symposium on Computers and
Communications (ISCC 2003), To appear.
[15] J. Zhang and J.Y. Chung, “Web Code Generator”,
Proceedings of the IASTED International Conference on
Applied Modeling and Simulation (AMS 2002), Nov.4-6, 2002,
Cambridge, MA, USA, pp. 505-510.
[16] J. Zhang and J.Y. Chung, “A New Model for Web
Application Development”, Proceedings of the IASTED
International Conference on Applied Modeling and Simulation
(AMS 2002), Nov.4-6, 2002, Cambridge, MA, USA, pp. 429-
434.

