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Abstract

We present an extension of Haskell’s type class concept in which a type class is identified with
the signature of an abstract type. As shown by Mitchell and Plotkin, abstract types can be
expressed using existential quantification. Unlike in Mitchell and Plotkin’s work, an abstract
type does not come with one — and only one — implementation. Rather, any concrete type can
be declared to be an implementation by a clause that corresponds to an instance declaration
in Haskell. We introduce F-bounded existential quantification, where an abstract type has the
form:

da.C(a).7().

Here, C(a) is a set of constraints that restricts the range of the bound variable «, and 7(a) is
a type constructed from «. The expression reads “some type 7(«), where « is some arbitrary
fixed type satisfying constraints C'(«)”. The constraint set C' corresponds to a type class. Just
like a type class, it contains declarations for overloaded identifiers as well as conformity clauses
that declare one abstract type to be more specific than another.

The generalization of type classes to abstract types has the advantage of greater expressive-
ness: We can model polymorphic abstract types and heterogeneous data structures, concepts
which cannot be expressed in Haskell. An example of a polymorphic abstract type is Va.Bag «,
the abstract type of all bags with elements of type «. In Haskell, we would either have to fix
the element type, or we would have to fix the implementation of Bag.

Our extension shares the desirable properties of the type class approach in that it is fully
static and in that type reconstruction is feasible.

*Supported by the Defense Advanced Research Projects Agency/Information Systems Technology Office under
the Office of Naval Research contract N00014-90-J-1110
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1 Introduction

Recently, many researchers have looked at the problem of systematic overloading resolution [8, 19,
1, 5]. All these approaches use predicates (called type classes in [19]) which assert that certain
overloaded operations with given signatures are defined. Functions can be made dependent on
these assertions using a form of bounded universal type quantification, in which the bound variable
is restricted to range over the instances of a type class. In [19] it was noted that type classes and
abstract data types [14, 3] are similar in that they both define a signature without its implemen-
tation. Because of this correspondence, Wadler and Blott called for a closer exploration of the
relationship between type classes and abstract data types.

Here we describe the results of our exploration of this relationship. We show that type classes
can indeed be generalized to a form of abstract data types, by identifying them with type signa-
tures. Furthermore, the generalization is not simply a recast of the type class concept into another
formalism; it allows us to model several new concepts. Among these are polymorphic abstract
types and heterogeneous data structures.

Polymorphic abstract types are useful for modeling signatures which depend on other types.
The abstract type Va.Bag «, for instance, cannot be represented as a type class, but it can be
represented in our type system.

Heterogeneous data structures are useful in extensible software systems. An example is a
window handler which provides central bookkeeping for windows of various types. In an extensible
system, window types can be defined in clients as well as in the handler itself. Therefore, the type
of any global data structure (say, one containing all active windows) cannot be a simple, finite sum
type. What is needed is a heterogeneous structure whose elements are instances of an abstract type
“Window”.

Programming languages wusually support heterogeneous data by adopting an
object-oriented subtyping rule (it is no coincidence that the interest in object-oriented program-
ming has spread in parallel with the use of windowing operating systems). Subtyping is not without
problems, however. First, pervasive subtyping prevents the definition of polymorphic homogeneous
data structures, which are useful in many circumstances. The function mazimum, for instance,
which finds the maximum of element a list, makes sense only on homogeneous lists whose elements
are all of the same, ordered type. Another, more serious, problem stems from the subtype rule
for method functions. Because the first argument to a method is implicit, and the others are
subjected to the contravariance rule, method arguments are treated asymmetrically. This leads to
counter-intuitive subtyping rules for methods with additional arguments of type “like current”.

Several newer approaches try to overcome the problems caused by the contravariance rule in
object-oriented programming. Descriptive classes [17] and F-bounded polymorphism [1] are in
concept very similar to Haskell’s type classes. Other methods, which generalize the subtyping
concept, introduce “like current” parameters, which are checked type correct at runtime [4], or
replace the subtyping rule by something rather more complex [16]. None of these latter approaches
is both fully static and safe. A system that describes heterogeneous data types directly is [18].
Thatte uses partial types instead of existential quantification, which leads to less precise typings
and requires runtime type checking in general. By contrast, our system follows the type class
approach in that it is fully static; no type-related errors can occur at runtime. Another desirable
property that our system shares with type classes is the existence of a type reconstruction algorithm.

The rest of this paper is organized as follows: Section 2 gives an informal overview of of abstract
types. Section 3 discusses heterogeneous data structures, Section 4 sketches a runtime model, and
Section 5 concludes. The formal typing rules are given in the Appendix.
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2 Abstract Types

Following [14, 3], we identify abstract types with existential types. We use a bounded form of
existential quantification. An abstract type is of the form

Ja.C(a).7(a).

Here, C'(«) is a set of constraints which restricts the range of the bound variable «. 7(a) is a type
constructed from «. In the simplest case, 7 = . As an example, in our framework the abstract
type of values admitting an order relation is

da . [(<), (L) :a = a— Bod] . «,

which reads “some (concrete) type «, on which (<) and (<) are defined”.
On the other hand, the unbound abstract type

da .. (@ = a— Bool) X «

describes all pairs whose components are a function of type o — a — Bool and a value of some
(unconstrained) type «. Thus each value of this abstract type might have a different first (and
second) component.

An example of an existential type with a more complex type component is:

da. [(<), (L) : @« = a — Bool] . List (a X ),

the type of all lists whose elements are homogeneous pairs whose components have both the same
ordered type.
By contrast,

List ((3a . [(<), (L)t = a = Bool] . ) x
(Fa. [(<), (L) ra—= a— Bod] . a))

gives us a list of heterogeneous pairs, whose components are are arbitrary — possibly different —
ordered types.

2.1 Abstract Type Declarations

In the concrete syntax of our example language, we use keywords some ... where instead of exis-
tential quantifiers. An abstract type is expressed as follows:

T = some a where C in 7/

The bound variable a is a placeholder; it stands for all implementations of the abstract type.
We adopt the convention that the signature part following where can be omitted if it is empty and
that the type part following in can be omitted if it is just the placeholder.

The signature part corresponds to a type class. It consists of an arbitrary number of conformity
clauses and definitions of overloaded identifiers. A conformity clause is of the form « :: 7, where
« is the placeholder and 7 is another abstract type. It reads: “Every implementation of the type
being defined is also an implementation of 77. A definition of an overloaded identifier is of the form
x : o. It states that an identifier = of type [T =: a]o is declared for all implementations 7 of the
defined type. Here, [T =: a] denotes substitution of 7 for a.
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Example 2.1 Some simple abstract type declarations are:

Eq = some a where

(=): a -> a -> Bool
Ord = some a where

a :: Eq

(), (k=) : a -> a -> Bool
Point = some p where

P :: Ord
X, y : p -> Coord
move : p -> (Coord * Coord) -> p

So far, we have used abstract types in ways which could just as well have been expressed with
type classes. Abstract types are more general than type classes, however, since they are identified
with types. Being types, they can be used in a more flexible way than predicates on types can. Two
examples are the possibility to define values of an abstract type, and the possibility to construct
abstract types which are parameterized by other types. Values of abstract types are important
in connection with heterogeneous data structures (see Section 3). An example of a parameterized
abstract type is the following:

Example 2.2 Bag is a type constructor which, given an element type a, yields the abstract type
of bags of a.

a :: Eq => Bag a = some b where
b :: Eq
emptybag : b
singleton :a->b
union,
intersection,
difference :b->b->0bD
elements : b ->List a

2.2 The Implementation Relation

We have seen that an abstract type defines the interface of some data structure; it does not specify
the data structure’s implementation. To specify that a given type 7 is an implementation of an
abstract type o, we use a variant of a conformity clause, in which the implementations of all
functions in ¢’s signature are given. Syntax:

impl == [cond =] T : owherez| =e,..., T, =€,
cond == J[cond,] a0
Notes:

1. Every concrete or abstract type may occur in arbitrarily many implementation clauses. Hence,
an abstract type can be implemented by several concrete types, and a concrete type can be
the implementation of several abstract types.
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2. Implementations can be conditional.

3. Each implementing expression e; must be of type [t =: a]7;, where the declaration z; : 7;
forms part of the signature of o and « is ¢’s placeholder variable.

Example 2.3 Lists conditionally implement the Eq abstract type:

a :: Eq => List a :: Eq where
(=) = listeq

listeq : List a —-> List a —-> Bool
listeq = ...

In the same style we can state that List conditionally implements the Ord abstract type. Lists
of elements with equality also implement bags; a simple, albeit inefficient implementation would
be:

a :: Ord => List a :: Bag a where
(=) xs ys = sort xs = sort ys
emptybag =[]
singleton x = [x]
union = (++)
intersection = isect
difference = (--)
elements = 1id
isect [] ys = [1
isect (x:xs) ys = (if x ‘in‘ ys then [x] else [1)
++ isect xs (ys —-- [x])

Note that List implements the abstract type Eq in two different ways: Once directly, meaning
lexical ordering, and another time indirectly, via Bag. Having two different implementations of
equality raises the question which implementation is meant by (=) We disambiguate by the rule
that left-hand side occurrences of (=) refer to the newly defined type (i.e. Bag), whereas right-
hand side occurrences refer to the implementing type (i.e. List). As a consequence, the definitions
of a signature are not known in the expressions that implement the signature. In our example,
intersection had to be defined in terms of an auxiliary, recursive function isect. This is admit-
tedly rather crude, but the only route open to us if we want to avoid atrocities like CLU’s rep and
cvt.

2.3 F-Bounded Polymorphism
Like existential types, universal types are bounded, having the form:
Va.C(a).7(a)

C is a set of conformity constraints. A conformity constraint « :: 7 restricts the bound variable
« to range only over implementations of abstract type 7. Again, this is similar to the predicated
types in [19]. It is strictly more expressive than universal polymorphism with type class bounds
since bounds are types and therefore can be parameterized.
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Example 2.4 A function to compute the symmetric difference between two bags:
symdiff : Va.VB. (B :: Baga) . x [ —
symdiff bl b2 = union (difference (bl, b2), difference (b2, bl))

In other type systems such as the ones of Haskell, ML [12], or XML+ [13], we either have to
fix the element type «, or we have to fix the implementation of Bag, whereas our system allows to
abstract on both element type and implementation.

2.4 Abstract Types are Large

Not all types have equal status in the Hindley/Milner system. Universally quantified types are
second class citizens, since they cannot be substituted for a type variable. The reason for this
restriction is that type reconstruction is conjectured to be undecidable if quantifiers range over
polymorphic as well as monomorphic types [7]. In [10], the types over which quantifiers range are
called small types, and all other types are called large types. Universally quantified types would
be considered large by that definition. As far as existential types go, we have a choice. To see the
distinction, consider the type expression (from [3])

do.a X a.

If abstract types are large, this expression denotes the type of pairs where both elements have the
same, unknown type. On the other hand, if abstract types are small, we can substitute Jo.«x for «
and write:

dJaaxa = (Ja.a) x (Fa.q)

Hence, we see that the abstract type da.a X a stands now for pairs whose elements have arbitrary,
possibly different types.

In this work, we have chosen abstract types to be large. That is, quantifiers do not range over
abstract types, and abstract types cannot be substituted for type variables. This makes automatic
type reconstruction possible (an inference algorithm is given in [9]). For the general case, with
quantifiers ranging over abstract as well as concrete types, the problem of type inference is still
open.

One consequence of abstract types being large is that the form of types taking part in the proof
of a typing is restricted. The typing rules in Appendix A force all existential quantifiers to occur
only at the outermost level, as element types of an algebraic type, or as function results. While
we regard the syntax of types required by the typing rules as their “normal form,” we use abstract
types more liberally in our programming examples. The examples can be “de-sugared” to normal
form using laws (P1) — (P3):

(P1) (Fa.Cr) =7 = Va.C.(r = T)

(P2) (Fa.C.my) xme = Fa.Capy X 19 if v is not free in 79
m X (Fa.C.pe) = Ja.Capy X 12 if « is not free in 7,

(P3) FJa.(a::3.C.0).a = Ja.C.a
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3 Heterogeneous Data Types

Abstract types with more than one implementation give us heterogeneous data structures for free.
If we declare a data structure with a field of an abstract type, every occurrence of this field can be
represented by a different implementation of the abstract type. That is, the structure is (boundedly)
heterogeneous.

Example 3.1 A heterogeneous list of windows.
Assume the following hierarchy of window types to be given:

Window = some w where
handle : w -> Event -> w
display : w -> DisplayList

TextWindow = some w where w :: Window

GraphWindow = some w where w :: Window

We can then declare a type WindowList in terms of the abstract type Window. Note that unlike
List, WindowList is a type, not a type constructor, since there are no variables on the left hand
side of the declaration.

WindowList = WNil | WCons (Window * WindowList)

Then, in the expression
case wl of WCons (win, ws) => ...

the pattern win is typed Window. This means that win can be passed to every function which
expects an arbitrary implementation of Window as argument.

The constructor aspect of the above type declaration is in some sense the reverse of the pattern
matching aspect. With properties P1, P2, and P3, we have:

WCons : Window x WindowList — WindowList
= (P3)
(Fw . w = Window . w) x WindowList — WindowList
= (P2)
(Fw . w = Window . w x WindowList) — WindowList
= (P1)

Vw . w :: Window . (w x WindowList — WindowList).

Hence, we see that, first, the quantifier changes between constructors and pattern matching, and,
second, that WCons indeed may be passed an arbitrary implementation of Window. This means
that (implementations of) TextWindows or GraphWindows, for example, can also be included in
window lists, or, put in other words, that WindowList is a heterogeneous data structure. This
solves the extensibility problem described in the introduction. For example, a broadcast function,
which passes an event to all windows in a WindowList could be expressed as follows:



Laufer/Odersky: Type Classes are Signatures of Abstract Types 8

broadcast : WindowList -> Event -> WindowList

WNil
WCons (handle w e, broadcast ws e)

broadcast WNil e
broadcast (WCons (w, ws)) e

4 Runtime Model

Since the implementation of the operations defined in an abstract type is not known statically, we
have to maintain this information at runtime, in the form of “method dictionaries”. Our runtime
model is an extension of the one introduced by Wadler and Blott [19]. They present a scheme for
the translation of expressions with type classes into equivalent ML expressions.

Every implementation of an abstract type defines a dictionary, i.e. a tuple which contains the
definition of all operations in the type’s signature. Dictionaries are passed to polymorphic functions
as additional arguments. A dictionary is passed for every conformity constraint in the function’s
type. A function such as

redefine : Vw. (w: Window).w — w

would be translated to a function with two arguments, a dictionary and a window. The additional
dictionary arguments are passed at the point in the program text where the polymorphic type is
instantiated. An expression such as redefine tw, where tw is a TextWindow, would be translated
to (we mark translated versions of original identifiers with an apostrophe):

redefine’ textWinDict tw.

This method is identical to the one described in [19], with conformity constraints replacing instance
constraints in Haskell. For abstract types, an extension to the scheme is needed.

We map values of an existential type into dictionary/value tuples, similarly to the memory
layout for object-oriented languages. A WindowList would thus be translated into a data structure
which is decorated with one dictionary table per element:

WindowList’ = WNil’
| WCons’ (WindowDict, (WindowData, WindowList’))

Since existential polymorphism in the type becomes universal polymorphism in its constructors, all
constructors already have the needed dictionaries as arguments. The original WCons, for example,
is of type

WCons : Va. (a: Window) . a x WindowList — WindowList,

and would hence be translated to a function whose signature matches the second alternative in
type WindowList:

WCons' : WindowDict x (WindowData x WindowList') — WindowList'

If a value of an existential types is passed to a function, all needed dictionary components are
extracted and passed as additional arguments. Hence, the expression

redefine w
where WCons (w, ws) = wlist,

would be translated to

redefine’ wdict w
where WCons’ (wdict, (w, ws)) = wlist.
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5 Conclusion

We have introduced a form of abstract data type that extends the type class concept of Haskell and
allows us to model heterogeneous data structures, useful for extensible software systems. The type
system is fully static, that is, no type-related errors can occur at runtime. Types are reconstructible
using a variant of the ML type inference algorithm.

Since abstract types are large, our type discipline is polymorphic over concrete types only. An
interesting extension, which we are currently investigating, would be a theory that is is polymorphic
over abstract types as well. We could then abstract over properties of types; a concept such as
List T, the list of objects which are instances of the given abstract type 7', could be defined. This
expression could then be instantiated to yield List Window, or List Order, for example. We see
two ways to achieve that extension: We could either introduce explicit typing for abstract types in
the style of the ML Module system [10], or we could generalize our system by considering existential
types to belong to the universe of small types. The problem of type inference in such an extension
remains to be solved, however.
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A Typing Rules

This section presents the formal typing rules for abstract data types. For the kernel language,
these rules are similar to the ones of the Hindley/Milner system [11, 6]. In their overloading
and implementation aspects, they are derived from the rules in [19]. New rules for existential
quantification and the formal treatment of algebraic data types have been added.

A.1 Language

The example language is designed such that common functional languages can be mapped into it.
It consists of expressions of the following forms:

Expressions e == =z (identifier)
| eé (function application)
|  Az.e (function abstraction)
| letz=-cin¢ (local declaration).
| datacine (data declaration)
| overz:oine (overloaded identifier)
| instz:o=einé (instance declaration)

Predefined:

fix : Va.(a—a) =«
if : Va.Bool > a— a— «
(-, : VaVBa—FB—axp

fst : VaVfaxf— «

snd : VaVBaxp—0
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The first four productions describe a conventional A-calculus language, similar to Ezp [11]
Instead of having a set of primitive types, we augment Exzp by data clauses defining algebraic types
(types are discussed in the next subsection). We also add declarations for overloaded identifiers
and their instances in the style of [19].

Example A.1 The overloaded identifiers of the abstract types Fq and Bag are declared by:
over eq :: Ya . EFqSig a in
over bag :: Vo . (eq :j EqSig o) . V(. BagSig a fin ...
The lower-case identifiers eq and bag name the defined operations. That is, eq is just the equality

function, and bag is a tuple of all functions defined in the abstract type Bag (see Example 2.2).
EqSig and BagSig are used as shorthands for the signatures of the abstract type. That is,

EqSig o = a— a— Bool
BagSiga f = (X (emptybag)
(. = B)x (singleton)

(B— B — P)x (union)

The conformity declaration that List o implements Bag « is translated as follows:
inst bag :: Va. (eq: EqSig ) . BagSig a (List o)
= (Nil,
Az.Cons x Nil,
Azs. \ys.append s ys,

)

More detailed examples are found in [19].
Remark on naming: All variable identifiers defined in a let or over clause, and all type and
constructor identifiers defined in a data clause are assumed to be different from each other.

A.2 Types

We augment Hindley/Milner types with algebraic data types and bounded universal and existential
quantification:

Type Identifiers T

Constructors K
Types T =« (variable)
| 17—n7 (function)
| 71 X7 (product)
| uwT.Kim+...+ Ky, (algebraic type)

Abstract Types 17 = Jaxn | T
Type Schemes o = Va.x.o | 7
Constraints X I= X1-X2 (conjunction)

| zyT (is-instance)
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An algebraic data type is given by a type expression of the form uT.Ky m + ...+ K, n,. Here,
T is the type’s name and K1, ..., K, are its constructors. For every such algebraic type, we assume
injection functions K;, projection functions | K;, and test functions 7K, to be given. The types of
these function are determined by rules INJ, PROJ, and TEST in Section A.4.

Example A.2 Type List a can be written as follows:
Va . p List . Nil + Cons (a x List)

The deduction rules in Section A.4 ensure that only algebraic types declared in a data clause take
part in a typing.

An abstract type is defined by a type expression of the form Ja.y.n. Here, n is a (possibly
abstract) type, and x is a constraint which restricts the range of the quantifier. Constraints are
finite sets of instance assertions z :; 7. If the constraint set is empty it can be omitted, dropping one
of the two delimiting period signs. Note that this is different from the concrete example language,
where constraints were written in the reverse way.

Example A.3 Type Bag a can be translated as follows:

Va .36 . (bag :j BagSig o ) . B

A.3 Assumptions

Assumptions are sets of type predicates.

Assumptions A = A A (conjunction)
|  7(o) (predicate in o)
Predicates in o w(0) 1= x:o0 (overloaded identifier)
| zyo0 (instance)
| z:0 (has-type)
| lo (is-type)
A.4 Typing Rules
Logical rules
TAUT — (n(0) € A)

A+ w(o)

AF 71'1(0’1) A F 7r2(02)

AND
A F 7i(o1).m2(02)
V.ELIM A F n(Va.x.0) AF [T=:a]x
A+ w([r =: a]o)
VINTRO A xt o) g rvay

A F n(Va.x.0)
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Rules V-ELIM and V-INTRO are generalized to cover all forms of type predicates in Section A.3,
instead of just predicates of the form e : 7. Note that type variables can be instantiated only with
concrete types.

A F 7(3a.x.n)
SBLIM I (g PV )
A F 7(3a.x.n)
SKOLEM A n(B=aln) . [B=alx - () BEEVAxm),

ag FV(n
A F 7'(Qa.x.Ja=:67) #EV(T)

With rule 3-ELIM, “superfluous” existential quantifiers, which do not bind anything, may be
dropped. Rule SKOLEM eliminates an existential quantifier in a subproof, replacing it with a
“Skolem” variable (written S in the rule above). There is no rule for introducing an existential
quantifier. Loosely speaking, the only way for an existential quantifier to enter a proof of (- e: 7)
is via an explicitly given abstract type in e. Type reconstruction is thus greatly simplified.

Rules for the base language

The rules for the base language (excluding data clauses and overloading) are fairly conventional:

AFe:T—n AF é:r

APP
AF (ee):n
ABS A.(x:7) Fe:n
AF (Az.e):7—n
Ak e:o A (z:0) F €T
LET

AF (letz=ecine): 7

Rules for algebraic type declarations and pattern matching

A.(lo) Fe:T

DATA
A+ (datacine): T
AF'uT.K ...+ K
INJ pld Ky + .+ Ky (1<i<n)
A+ K;:shallow(n; — pT. Ky + ...+ Kp n)
ARVl K +...+ K,
PROJ 2 1 n Mn (1<i<n)
AFLK :pT . Kym+ ...+ Ky —
AF'uT.K ...+ K
TEST M 1M+ ...+ Ky, 1 <i<n)

A F?KZMTKlT]l—l-—l-KnT]n%BOOl

Rules INJ, PROJ, and TEST give types to injections, projections and test functions which are
associated with an algebraic data type. Function shallow in INJ converts a function signature of
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the form n — 1’ (which is syntactically illegal if 7 is quantified) to an equivalent shallow function
signature [2]. Existential quantifiers in argument position are converted to universal quantifiers
over the whole function.

shallow ((3a.x.n) = n') = Va.x.shallow (n —n')
shallow (1 —n) = 7—=7n
Rules for overloading

A (xpo) Fe:r

OVER
AF (overz:oine): T
AF z:p0
AF e: <o .
INST e:o (for/all (z .,'0) € A
A (xyo) b eé:T 0,0’ not unifiable)
AF (instz:o=eine): 7
AF o0
ITYPE _
AFz:0

The last three rules are essentially equivalent to rules for overloading resolution in [19]. Wadler
and Blott’s definition of “valid assumption set” corresponds to our “not unifiable” condition in rule
INST.

Wadler and Blott conjectured that principal types exist in their system, provided all over and
inst declarations are global. This was subsequently shown correct in [15]. We conjecture that the
extended system with existential type shares the principal type properties of type classes.

References

[1] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. Mitchell. F-bounded polymorphism for
object-oriented programming. In Proc. Functional Programming and Computer Architecture,
pages 273-280, 1989.

[2] L. Cardelli. Basic polymorphic typechecking. Science of Computer Programming, 9(8):147—
172, 1987.

[3] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism.
ACM Computing Surveys, 17(4):471-522, Dec. 1985.

[4] W. Cook. A proposal for making Eiffel type-safe. Computer Journal, 32(4):305-311, 1989.

[5] G. Cormack and A. Wright. Type-dependent parameter inference. In Proc. SIGPLAN’90
Conf. on Programming Language Design and Implementation, pages 127-136, White Plains,
NY, June 1990.

[6] L. Damas and R. Milner. Principal type schemes for functional programs. In Proc. 9th Annual
ACM Symp. on Principles of Programming Languages, pages 207-212, Jan. 1982.



Laufer/Odersky: Type Classes are Signatures of Abstract Types 14

7]

[10]

[11]

[12]

[13]

[14]

F. Henglein and H. Mairson. The complexity of type inference for higher-order typed lambda
calculi. In Proc. 18th ACM Symp. on Principles of Programming Languages (POPL), Orlando,
Florida, Jan. 1991.

S. Kaes. Parametric overloading in polymorphic programming languages. In H. Ganzinger,
editor, Proc. 2nd Furopean Symosium on Programming, Lecture Notes in Computer Science,
Vol. 300, pages 131-144, Nancy, France, March 1988. Springer-Verlag.

K. Laufer and M. Odersky. Type inference for an object-oriented extension of ML. NYU-CIMS
Report, New York University, Department of Computer Science, in preparation.

D. MacQueen. Using dependent types to express modular structure. In Proc. 13th ACM Symp.
on Principles of Programming Languages, pages 277-286. ACM, Jan. 1986.

R. Milner. A theory of type polymorphism in programming. J. Computer and System Sciences,
17:348-375, 1978.

R. Milner, M. Tofte., and R. Harper. The Definition of Standard ML. MIT Press, 1990.

J. Mitchell, S. Meldal, and N. Madhav. An extension of Standard ML modules with subtyping
and inheritance. In Proc. ACM Symp. on Principles of Programming Languages, Jan. 1991.

J. Mitchell and G. Plotkin. Abstract Types have Existential Type. In Proc. 12th ACM Symp.
on Principles of Programming Languages, pages 37-51. ACM, Jan. 1985.

T. Niphow and G. Snelting. Type classes and overloading resolution via order-sorted unifica-
tion. Technical Report PI-R8/90, Technische Hochschule Darmstadt, Praktische Informatik,
July 1990.

J. Palsberg and M. Schwartzbach. Type substitution for object-oriented programming. In
N. Meyrowitz, editor, Proc. Conf. Object-Oriented Programming: Systems, Languages, and
Applications and European Conf. on Object-Oriented Programming, pages 151-160, Ottawa,
Canada, Oct. 1990. ACM Press.

D. Sandberg. An alternative to subclassing. In Proc. Object-Oriented Programming: Lan-
guages, Systems and Applications, pages 424-428, 1986.

S. Thatte. Type inference with partial types. In Proc. Int’l Conf. on Algorithms, Languages
and Programming, pages 615629, 1988.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proc. 16th Annual
ACM Symp. on Principles of Programming Languages, pages 60-76. ACM, Jan. 1989.



