
Combining SOA and BPM Technologies for Cross-System Process Automation

S. Herr1, K. Läufer2, J. Shafaee2, G. K. Thiruvathukal2, G. Wirtz1

1Distributed and Mobile Systems Group, University of Bamberg

Feldkirchenstraße 21, 96052 Bamberg, Germany, sebastian.herr@gmail.com, guido.wirtz@uni-bamberg.de
2Emerging Technologies Laboratory, Dept. of Computer Science, Loyola University Chicago

820 N. Michigan Avenue, Chicago, Illinois 60611, U.S., {laufer|shafaee|gkt}@cs.luc.edu

Abstract

This paper summarizes the results of an industry case study
that introduced a cross-system business process automation
solution based on a combination of SOA and BPM standard
technologies (i.e., BPMN, BPEL, WSDL). Besides discussing
major weaknesses of the existing, custom-built, solution and
comparing them against experiences with the developed pro-
totype, the paper presents a course of action for transforming
the current solution into the proposed solution. This includes
a general approach, consisting of four distinct steps, as well
as specific action items that are to be performed for every
step. The discussion also covers language and tool support
and challenges arising from the transformation.

Keywords: SOA, BPM, BPMN, BPEL, WSDL, standards,
application integration, BPIOAI, web services

1. Introduction
As part of their efforts to automate enterprise-wide business
processes, organizations are often faced with the challenge
of integrating the data and business logic of several inde-
pendent application silos [6]. This issue is traditionally ad-
dressed through custom-made solutions that are expensive to
build and maintain, inflexible to changing requirements, error-
prone and often poorly aligned with the enterprise’s business
goals. One promising and increasingly recognized approach
to this problem is to combine Business Process Management
(BPM) and Service Oriented Architecture (SOA) concepts
and technologies with the goal of forging a flexible and cost-
efficient process automation and system integration solution.
In combination, both paradigms appear to be of significant
benefit to each other. BPM’s lack of focus on architectural
principles (e.g., loose coupling, service reusability) and its
poor flexibility in regard to technology choice (i.e., vendor
lock) are addressed by SOA. SOA on the other hand can
benefit from BPM’s top-down, requirements-oriented, and
visualization-focused approach that considers the entire life
cycle of business processes.

Despite the general recognition of a SOA and BPM con-
vergence and the resulting synergy [3, 7, 9], there is still an
extensive lack of best-practice examples and real-life industry

adoption, in particular in medium-sized and small enterprises.
One reason for this is a shortage of resources paired with the
common believe that SOA and BPM initiatives only bring re-
turn on investment (ROI) if applied on a large scale. While
this assumption may hold some cases, we argue that using the
suggested paradigms results, even in small-scale scenarios, in
considerable benefits that have the potential of significantly
outweighing the anticipated costs.

To back this proposition, we conducted an industry case
study with the goal of applying a combination of SOA
and BPM concepts and technologies as a replacement for a
custom-made, proprietary process automation solution. Our
focus was the universal use of standards, specifically the Busi-
ness Process Modeling Notation (BPMN) and the Business
Process Execution Language (BPEL). In particular, we iden-
tified weaknesses of the currently deployed solution and spec-
ified a transformation of this solution to the envisioned re-
placement, including a roadmap with specific required action
items along with the selection of pertinent tools. Finally, to
address financial considerations as well as several other con-
cerns, we thoroughly evaluated and compared both solutions,
with special emphasis on addressing the previously identified
weaknesses. The study was conducted in the setting of a top-
five global hosting company with the intent of delivering a
proof of concept for the feasibility and impact of the proposed
approach. The transformation itself was realized in the form
of a prototype (PT) that included process-models (BPMN)
and -code (BPEL), service interfaces (WSDL) and “dummy”
implementations of services, but no end-to-end implementa-
tion with the actual enterprise applications.

Our work was influenced by recent publications address-
ing the SOA/BPM convergence (e.g., [3, 7, 9]) as well as gen-
eral literature on approaches to application integration [5] and
SOA [1, 4, 6]. During the PT development, we have relied
extensively on the BPMN-to-BPEL mapping rules [8].

The remainder of this paper is organized as follows.
In section 2, after briefly describing the existing solution
and its weaknesses, we introduce the chosen pilot process.
In section 3, we present the approach and results of the
transformation, while section 4 compares both solutions
and discusses how the issues from section 2 are addressed.
We conclude with a summary and a discussion of future work.

Figure 1. Enterprise Architecture

2. Initial Situation
The environment’s system landscape comprises ten physically
separated back-office applications that each take over a dis-
tinct business or auxiliary function (e.g., Accounting System,
cf. Fig. 1). Together, these systems fully automate most of
the company’s business processes including sales, billing, and
provisioning, to name a few.

2.1. Existing Process Automation Solution

The company’s process automation approach integrates a
custom-made state transition system (STS) for process state
management and business rule enforcement with a custom-
made communication framework (CF) for system integration
(cf. Fig. 1 top). Information exchange between back-office
systems is realized via asynchronous XML-based messaging.
Typically, a new process is brought to life inside the STS,
which is triggered by an external event such as the submission
of a new sales order. The STS manages the process execution
by sequentially starting various integration flows via the CF.
Integration flows commonly visit several back-office systems
(sequentially and without the involvement of centralized co-
ordinator), cause business logic updates and/or collect data,
which is attached to the message and used later inside a dif-
ferent system as part of the overall process. Each integration
flow eventually returns to the STS causing a process status
update, which results in further actions.

2.2. Solution Benchmark

We have identified four high-level issues: initial development
and setup costs, maintenance costs (i.e., integration of new
systems, implementation of new business requirements, etc.),
technology and solution learning curve and the likelihood of
introducing errors during the mapping of business require-
ments to process implementations. Upon examining these
issues, we have detected four problems as their respective
root causes. In turn, these problems give rise to the criteria for
the evaluation and comparison with the suggested solution.
1. Lack of Sufficient and Practical Documentation

Acquiring sufficient knowledge to understand and work with
the existing solution requires collecting and aggregating

information from various sources (e.g., people, documents,
code) and was experienced as a highly time-consuming part
of the case study. Also, the poor documentation increases
the likelihood of introducing errors. Besides a lack of
language and technology tutorials, which can be ascribed
to the proprietary nature of the solution, the environment
also misses a common communication basis in the form of a
process model that can be shared among business analysts,
architects and programmers. Without such a model, new
requirements are likely to be misinterpreted when handed to
a programmer. Finally, even if sufficient documentation in
the form of state-transition (ST) tables, ST diagrams and flow
diagrams were available, it would not provide a complete and
practical picture.

2. Complexity of Solution and Process Setup

First, the initial setup required building most components
from scratch. This includes the STS with database setup,
database triggers, stored procedures, the event module as
well as the CF with its routing and archive modules, message
parser but also the development of the message structure (i.e.,
routing information) and other rules for new process setup.
Merely the message queues (MQ) (one per system) could be
acquired from a third-party vendor. Second, new processes
or even slight adjustments in existing processes require
careful and complicated planning and design. States, state
transitions and events need to be designed and set up. Routing
information has to be added or changed, integration flows
and additional message parsers have to be implemented. This
high effort of process maintenance is even further intensified
by the solution’s poor separation of concern (SoC). Although
process implementations are distributed across two compo-
nents (i.e., STS and CF), the solution places some of the
process-specific behavior inside the back-office systems (i.e.,
in some instances, the route of an integration flow is changed
during system invocation). This again requires most systems
to be aware that they are part of a higher-level process and
hence prevents them from being reused by other processes.

3. Poor Deployment and Testing Conditions

Process deployment requires manual addition or replacement
of routing information, states, events, etc. “One-click” de-
ployment is not supported. The effort for process testing has
been indicated by responsible personnel as being extremely
high. First, the various steps of a process (i.e., the systems
invocations) cannot be tested individually but only as part
of an integration flow. Second, process debugging is only
possible in retrospect by evaluating the log files of completed
flows. Third, the solution does not allow for design-time code
validation through respective tools.

4. Degree of Business-IT Alignment

The solution is clearly deficient with respect to the alignment
of the enterprise’s processes with its IT infrastructure. The
nature of the solution generally makes it difficult to translate
business requirements into implementations. Every process,
coming as a whole from the business side, needs to be split
up into several flows that are tied together via the STS. It

is often difficult to decide which parts of the process should
be realized through flows and which parts require state and
corresponding state transitions. Also, the question arises
whether process-specific rules should be enforced inside the
STS or inside the pertinent back-office system. In addition,
the implementer must sometimes deviate from the order of
steps provided by the business analyst.

2.3. Selected Business Scenario
As the basis for our PT, we chose the company’s sales pro-
cess as the pilot to be implemented with the suggested ap-
proach. We picked the sales process because of its univer-
sality (i.e., industry neutrality), its size and complexity (in-
volving all of the organization’s back-office systems), and its
volatile nature that would emphasize the benefits of the pro-
posed solution. At a glance, after an order has been placed via
an online shopping cart environment, the back-end process is
started performing various steps including the creation of a
customer account, a fraud check, the processing of financial
transactions and the initiation of product provisioning. Each
step is implemented by a different back-office system.

3. Solution Transformation
After analyzing the existing process automation solution and
taking a closer look at the selected pilot process, it became
clear that a simple transformation to the suggested technolo-
gies and paradigms would be insufficient to best demonstrate
their benefits. First, a mere transformation without addressing
the poor SoC of the current setup including its weak service
reusability potential did not appear to be meaningful or at least
would not allow us to demonstrate the potential for reusability
in the long run. Second, during the reverse-engineering effort
of the sales process from source code and residual process
documentation, we were able to discover several crucial er-
rors in process logic that could easily be repaired with the new
approach. Finally, the current solution does not implement
process-wide transactional behavior; this issue could also be
addressed effortlessly and hence was added to the list of ob-
jectives.

To reduce the complexity of the transformation process,
we decided to address the various goals and objectives in
four sequential steps. This so-called “transformation life-
cycle” (Fig. 2) can be reused for porting additional business
processes in the future. Phase one sought to integrate the
existing systems using BPEL. This implies exposing the
respective functionality via web services (WS). Additionally,
the issues of SoC and reusability have been addressed by
shifting some functionality between systems and by applying
well-deliberate service design. Phase two aimed to bridge
the gap to the business side by providing a visual, more
business-oriented representation of the sales process using
BPMN. Based on the newly created models from phase two,
phase three directly repaired process errors and added busi-
ness transactions from a requirements-oriented standpoint.
Finally, phase four synchronized the adapted process models
with the previously created implementation. Each of the four

Figure 2. Transformation Life Cycle

steps will be discussed in detail below.

Phase 1: Bottom-Up Process Automation

In phase one BPEL v1.1 and WSDL v1.1 where used with
Oracle’s JDeveloper tool that supports various SOA-related
development tasks including service-stub generation from
WSDL-files and visual BPEL modeling.

First, we exposed the existing systems as WS. As a re-
sult, 100% of the systems’ functionality (i.e., business logic)
was reused and system access has merely been transformed
from the CF to WSDL-based access. One important task was
the definition of service inputs and outputs: business docu-
ments, such as an invoice, that are specified through XML
schemas. The challenge was to transform the structure of
the existing XML message into various modular schemas that
can each be passed into the respective service, individually
or in aggregated form. The transformation was required for
adopting BPEL’s orchestration approach. A BPEL process
locally stores process data, such as a sales order (consisting
of a quote, customer data, product selection, etc.), and ex-
tracts data (e.g., one specific product item) in the course of
a service invocation as needed. A second challenge was to
improve SoC and potential for reusability. To this end, we
moved some functionality between systems as well as from
the systems into the process. The newly created services have
been designed accordingly (i.e., assuming the functionality in
the new place).

Second, we implemented the sales process in BPEL by or-
chestrating the previously designed services. This required
a transformation of the state- and flow-based solution into
an activity-based solution. Process state management and
routing of messages is now realized transparently by the re-
spective infrastructure, and the various integration flows were
combined into one process. Our experience was that all as-
pects of the sales process could be expressed in BPEL with
no restrictions.

As our deployment and testing environment, we installed
the Oracle SOA Suite. It ships with an Enterprise Service

Bus (ESB) and a BPEL engine and integrates nicely with
the chosen IDE (JDeveloper), allowing BPEL processes and
services to be deployed from within the IDE. The installation
of the BPEL engine and ESB, or optionally a lightweight WS
framework, makes the STS and CF obsolete (cf. Fig. 1). With
some careful planning, it should also be possible to run both
solutions concurrently until all processes have been ported.

Phase 2: Bottom-Up Process Visualization

The potential of the proposed solution can be fully utilized
only with the addition of a process model that may be used as
a communication basis among participating stakeholders. In
phase two, we performed a mapping from the created BPEL
code to a visual BPMN-based process model using BPMN
v1.0. The model was created with the Microsoft Visio stencil
extension from ITP Commerce. The resulting business
process diagram (BPD) is illustrated in Fig. 3 (exclusive the
highlighted parts). The mapping was done based on the rules
by [8] and turned out to be very straightforward. All aspects
of the BPEL code could be transformed to the BPD.

Phase 3: Top-Down Process Adaptation

The objective of phase three was to repair flaws, to add addi-
tional functionality and to make the process transaction-safe.
Tool and language support is identical to phase two. As a
first task, we swapped some steps in the process, which were
out of order in the existing implementation. Secondly, we
added one extra step at the end (i.e., “Send Order Completed
Notification”), which was missing in the original solution.
Thirdly, we extended the BPD with a manual order verifica-
tion option and finally added rollback processes that would
reverse prior system updates in case of process failure. The
resulting artifact is an extended version of the BPD from
phase two (i.e., Fig. 3, inclusive the high-lighted parts) as
well as additional BPDs for rollback- and related processes
(not shown here). It is important to recognize that phase three
is entirely requirements-driven and independent of the un-
derlying process and system implementations. Nevertheless,
the new functionality was modeled based on design decisions
that determined which system had to implement the new
requirements in the future.

Phase 4: Top-Down Process Implementation

The final step in our life cycle was the synchronization of the
BPDs from phase three with the existing implementation from
phase one. Tool and language support are the same as in phase
one. Most parts of the BPDs were implemented with no effort
by using the visual process modeler of the IDE.

The implementation of the manual verification step and the
transactional behavior is of interest. The latter was necessary
to map the rollback processes from the BPD to the BPEL im-
plementation. BPEL realizes loosely-coupled business trans-
actions with its built-in compensation and fault handlers. A
very convenient BPEL feature is the automatic execution of
compensation handlers of those scopes that are already com-
pleted when the error occurs. An example for our case is the

deletion of the sales order in the Sales System and the re-
versal of the “Create Customer Account”-sub process (e.g.,
after an order expired while waiting for manual payment, cf.
Fig. 3). Both steps required an extension of the previously
created WSDL interfaces with additional operations that sim-
ply reverse the existing operations.

The manual verification of orders naturally requires
human involvement. Unfortunately, BPEL does not support
human interaction in a standardized way. On the other side,
we purposely refrained from using Oracle’s proprietary
BPEL extension for human workflows to avoid vendor lock.
We rather addressed this issue by simply hiding the human
involvement behind a custom-made service. In this case,
the process asynchronously submits the sales order to an
“Order Escalation Service,” which prompts the need for
order-verification to a user interface. The process waits in the
current status until it is called back by the service after the
issues has been resolved.

4. Evaluation and Solution Benchmark
This section benchmarks the existing solution against the pro-
posed solution. We will discuss the issues identified in sec-
tion 2.2 and outline how they are addressed in the new solu-
tion. We also provide some specific figures (i.e., cost savings)
based on our experiences with the PT development. Never-
theless, the results presented here are conjectures that have
not been measured owing to time restrictions. Determining
the actual ROI would require operation and observation of the
new solution in production environment over a period of sev-
eral months.

In summary, the proposed approach combines state-
transitions and integration flows into one artifact (i.e., BPEL
process) whereas the BPEL engine orchestrates the various
services into one enterprise-wide process. Changes in routes
are now handled inside the process. Messages are transmitted
per service invocation and not per flow. Service reusability
is improved and process-wide transactional behavior is
provided. The solution comprises an end-to-end process
model clearly displaying all business requirements. Finally,
the STS and CF are replaced by SOA and BPM infrastructure
components (cf. Fig. 1).

1. Documentation

With the BPD (cf. Fig. 3) most information about the sales
process and participating services is available at a glance.
Aggregation of information from several sources (including
source code review) is not necessary. The process clearly
visualizes all steps, service invocations, possible faults,
events, branches and business rules (e.g., expected values
for decision points). The translation from the model to the
implementation is unambiguous and the error likelihood is
reduced. Since BPMN is specifically designed to be stake-
holder neutral [8], it allows all participants to understand
the model quickly. By contrast, ST- and flow diagrams
may be harder to understand by purely business-focused
staff. Furthermore, new stakeholders can quickly acquire

information about languages (i.e., BPEL, BPMN, WSDL)
and infrastructure (i.e., BPEL engine, ESB) used in the
project by studying some of the myriads of available tutorials
and code examples. It will also be easier to recruit new
stakeholders (e.g., engineers) that already carry the respective
knowledge; this is not possible with a proprietary solution.

2. Complexity of Solution and Process Setup

The proposed solution has the potential of significantly
reducing time-to market of the initial setup and of new re-
quirements. Infrastructure is entirely replaced by third-party
offers, which greatly reduces the setup time of the initial so-
lution. Design and implementation of the generic parts of the
STS and CF was indicated by the responsible manager with
approximately US$70,000 (including purchase of several
MQ licenses), which is already above the purchase price of
a commercial SOA Suite license (US$50-65,000 assuming
that one license will be sufficient). Nevertheless, despite the
possibility of relying on open source infrastructure, we argue
that even higher investments will pay off as the maintenance
costs of enterprise applications commonly are much more
significant [2] and this is where the suggested solution scores
big points. Setup of new processes and adjustments in
existing processes is far less time consuming. This is besides
the improved testing conditions especially also ascribed to
BPEL’s predefined language constructs for process behavior
as well as the tool support with its visual BPEL modeler,
code generation etc. Furthermore, services can be designed
for reuse, which again may reduce development time in the
future. In particular, we anticipated savings of approximately
US$10,000 in personnel cost only for the initial setup of the
sales process. Simple adjustments in process logic can save
up to 80% of implementation and testing time. With more
complicated adjustments (e.g., the addition of a new payment
option), this is even more significant.

3. Deployment and Testing Conditions

The solution’s testing and deployment conditions have
improved significantly. The infrastructure ships with built-in
features that facilitate testing and debugging. Processes can
be deployed effortlessly via the respective user interface
or directly from within the IDE. Versioning is supported
transparently (i.e., changed processes are deployed under a
new version, running processes are completed in their old
version). Furthermore, pre-deployment code verification is
provided by the IDE and greatly reduces runtime errors. Fi-
nally, all services can be tested individually before attaching
them to a process. The improved testing and deployment
situation has a significant impact on the cost savings already
discussed.

4. Degree of Business-IT Alignment

BPEL’s orchestration approach in conjunction with the
BPDs improves the solution’s general degree of business-IT
alignment. The process is visualized and implemented in
a more natural way. Process behavior (e.g., branching,
business rules, etc.) is integrated into one artifact and not

distributed across several components. The number of steps
in the process that cannot directly be mapped to a business
requirement is reduced, thus, the gap between requirements
and implementation is smaller.

5. Conclusion and Future Work
In this paper, we argued that a cross-system process automa-
tion solution leveraging SOA and BPM technologies can be
significantly superior to a custom-built solution. We also pre-
sented an approach for porting the existing processes to the
suggested solution. The study showed how the chosen con-
cepts and technologies can be applied to a real-life scenario.
All aspects of the pilot project (i.e. process model and im-
plementation, services, etc.) were realized with the selected
languages, and the PT was successfully tested. In conclusion,
the study was a considerable success and demonstrated the
merits of using a combination of SOA and BPM for process
automation and system integration purposes. The resulting
value gain was greatly recognized by the responsible person-
nel in the chosen environment.

Finally, to guarantee feasibility and long-term success, we
recommend performing a more thorough analysis and evalua-
tion of infrastructure and tool support for the specifics of the
environment, including, for instance, issues such as tool se-
lection. Second, an in-depth evaluation of quality of service
aspects (e.g., scalability, security, reliability) should be per-
formed. Furthermore, it may be advisable to extend the PT
with an end-to-end implementation that involves the pertinent
systems. As a last step, we believe that drafting an adoption
strategy (i.e., guidelines, education of staff, adoption sched-
ule) will help to discover other possible issues.

In general, the transformation life-cycle introduced in
section 3 requires more case studies in order to adjust and
generalize the porting process outlined in Fig. 2 in a way that
it becomes useful also under different settings.

References

[1] N. Bieberstein, S. Bose, M. Fiammante, K. Jones, and R. Shah.
Service-Oriented Architecture (SOA) Compass: Business Value,
Planning, and Enterprise Roadmap. IBM Press, 2005.

[2] L. Erlikh. Leveraging legacy system dollars for e-business. IT
Pro, 2(3):17–23, May/June 2000.

[3] F. Kamoun. A roadmap towards the convergence of business
process management and service oriented architecture. Ubiquity
Volume 8 , Issue 14 April 2007.

[4] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA Service-
Oriented Architecture Best Practice. Prentice Hall Ptr, 2004.

[5] D. S. Linthicum. Next Generation Application Integration:
From Simple Information to Web Services. Addison-Wesley Pro-
fessional, 2003.

[6] B. Lublinsky. Defining SOA as an architectural style. IBM
Website, January 2007.

[7] J. Noel. BPM and SOA: Better together. IBM Website, White
Paper, 2005.

[8] OMG. Business Process Modeling Notation specification.
OMG Website, July 2007.

[9] M. Rosen. BPM and SOA: Where does one end and the other
begin? BPTrends, January 2006.

Figure 3. Sales Process BPD

