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Abstract

Many statically-typed programming languages provide an abstract data type construct, such
as the module in Modula-2. However, in most of these languages, implementations of abstract
data types are not first-class values. Thus they cannot be assigned to variables, passed as func-
tion parameters, or returned as function results.

Several higher-order functional languages feature strong and static type systems, paramet-
ric polymorphism, algebraic data types, and explicit type variables. Most of them rely on Hind-
ley-Milner type inference instead of requiring explicit type declarations for identifiers.
Although some of these languages support abstract data types, it appears that none of them
directly provides light-weight abstract data types whose implementations are first-class values.

We show how to add significant expressive power to statically-typed functional languages
with explicit type variables by incorporating first-class abstract types as an extension of alge-
braic data types. Furthermore, we extend record types to allow abstract components. The com-
ponents of such abstract records are selected using the dot notation.

Following Mitchell and Plotkin, we formalize abstract types in terms of existentially quan-
tified types. We give a syntactically sound and complete type inference algorithm and prove
that our type system is semantically sound with respect to a standard denotational semantics.
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Programs]: Studies of Program Constructs — type structure

General Terms: Languages, Theory

Additional Key Words and Phrases: Dynamic dispatching, existentially quantified types, first-
class abstract types, polymorphism, type inference, universally quantified types

1 Introduction

Many statically-typed programming languages provide an abstract data type construct, such as
the package in Ada, the cluster in CLU, and the module in Modula-2. In these languages, an
abstract data type consists of two parts, interface and implementation. The implementation con-
sists of one or more representation types and some operations on these types; the interface speci-
fies the names and types of the operations accessible to the user of the abstract data type.
However, in most such languages, implementations of abstract data types are not first-class val-
ues. Thus they cannot be assigned to variables, passed as function parameters, or returned as
function results.

Several higher-order functional languages, such as Haskell [10], Hope [2], Miranda [27], and
ML [19], feature strong and static type systems, parametric polymorphism, algebraic data types,
and explicit type variables. Most languages in this group rely on Hindley-Milner type inference
instead of requiring explicit type declarations for identifiers. Although some of these languages
support abstract data types, it appears that none of them directly provides light-weight abstract
data types whose implementations are first-class values. Instead, they provide several distinct
constructs that can be used to express abstract data types:

• Tuples or records of closures can be used to model abstract data types [23]. The hidden bind-
ings shared between the closures correspond to the representation, the closures themselves
correspond to the operations, and the type of the tuple or record corresponds to the interface.
The shortcoming of this approach is the complete encapsulation of the internal representation,
which makes it hard to add operations to the abstract type or to implement efficient binary
operations [11].

• Modules provide a mechanism for separate compilation and data abstraction. A module in
Haskell consists of an interface and an implementation of that interface. The Standard ML
module system generalizes modules by allowing signatures (interfaces) and structures
(implementations) as independent entities: several structures may share the same signatures,
and a single structure may satisfy several signatures. Furthermore, Standard ML provides
parameterized structures called functors. For type-theoretic reasons, first-class structures
would entail a type of all types, leading to inconsistencies in the language [18, 20]. Therefore
structures are not treated as first-class values. However, this causes considerable difficulties in
a number of practical programming situations [11]. (Some recent proposals that do treat struc-
tures as first-class values are discussed toward the end of this section.)
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• The abstype  construct in Standard ML and Miranda allows the declaration of abstract data
types, but admits only one implementation per type. Haskell emulates this construct by
exporting an algebraic data type without its constructors from a module; thus it requires a sin-
gle implementation for each type as well. Since the abstype  construct can also be emulated
in Standard ML within the module system, the former has largely been superseded by the lat-
ter.

On the type-theoretic side, Mitchell and Plotkin [22] and subsequently Cardelli and Wegner [4]
have shown that abstract types can be represented as existentially quantified types. By stating that

a value v has the existentially quantified type , we mean that  has type  for some

fixed, but private type . 

This paper demonstrates how light-weight abstract data types with first-class implementations
can be conveniently integrated into any functional language with a static, polymorphic type sys-
tem, explicit type variables, and algebraic data type declarations. The key idea of our work is to
allow existentially quantified component types in algebraic data types. For the sake of concrete-
ness, our proposal is presented as an extension to ML. It equally applies to other languages with
similar type systems, such as Haskell, Hope, or Miranda. Furthermore, our proposed extension is
independent of strictness considerations. We show how data types with existential component
types add significant flexibility to a language without even changing its syntax; in particular, we
give examples demonstrating how we express

• first-class abstract types,

• multiple implementations of a given abstract type,

• heterogeneous aggregates of different implementations of the same abstract type, and

• dynamic dispatching of operations with respect to the representation type.

We present a deterministic type inference system in the style of Damas and Milner [7] for our
language, which leads to a syntactically sound and complete type inference algorithm. Further-
more, the type system is semantically sound with respect to a standard denotational semantics.
We then extend record types to allow abstract components. The components of such abstract
records are selected using the familiar dot notation. The semantic soundness of this extension is
shown by a type-preserving translation [11] to the first extension.

Our proposal has been implemented by Leroy and Mauny [15] in the Caml Light compiler for
ML. All examples from this paper have been developed and tested using this compiler and are
given in Caml syntax.

Most other work on existential types does not consider type inference or permit polymorphic
instantiation of identifiers that have existential type. By contrast, such identifiers are let-bound in
our system and may be instantiated polymorphically, as illustrated in Section 2.

Hope+C [24] is the only prior work known to us that includes Damas-Milner-style type infer-
ence for existential types. However, the typing rules given there are not sufficient to guarantee the

α.∃ τ v τ̃ α⁄[ ]τ

τ̃
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absence of run-time type errors, even though the Hope+C compiler seems to impose sufficient
restrictions. The following unsafe program, here given in ML syntax, is well-typed according to
the typing rules, but rejected by the compiler. (The type variable 'a  is existentially quantified.)

type T = K of 'a
let f x = let K z = x in z

f(K 1) = f(K true)

Existential types combine well with the systematic overloading polymorphism provided by
Haskell type classes [28]. We extend Haskell’s data  declaration similarly to the ML datatype

declaration [12, 11]. In Haskell, it is possible to specify what type class a universally quantified
type variable belongs to. In our extension, we can do the same for existentially quantified type
variables. This allows us to construct heterogeneous aggregates over a given type class.

Existential types are also beneficial in relation with dynamic types. Leroy and Mauny [14] pro-
pose an extension of ML with dynamics, pairs consisting of a value and its type. Dynamics admit
pattern matching on both the value and the run-time type. Existential types are used to match
dynamic values against dynamic patterns with incomplete type information. This makes dynam-
ics useful for typing functions such as eval . However, dynamics do not provide type abstraction
since they give access to the type of an object at run-time. It seems possible to combine Leroy and
Mauny’s system with ours, extending their existential patterns to existential types. We are cur-
rently investigating this point.

Pierce and Turner [25] describe an object-oriented language based on existential quantification
instead of recursive record types. Their language is based on an extension of  that includes sub-

typing and seems sufficiently powerful to model most features found in typical object-oriented
languages, including class inheritance, reference to the methods of a superclass, and private
instance variables. However, their language is explicitly typed, and algorithmic type inference is
not considered.

Starting with earlier work by Mitchell and Plotkin [22] and MacQueen [16], there has been an
ongoing discussion whether abstract types should be replaced by an advanced module system
such as the one found in Standard ML [19]. Since modules are not first-class values for type-the-
oretic reasons, their use as abstract data types is limited.

Mitchell, Meldal, and Madhav [21] describe the possibility of treating modules as first-class
values but do not address the issue of type inference. By hiding the type components of a struc-
ture, the type of the structure itself is implicitly coerced from a strong (dependent) sum type to a
weak (existentially quantified) sum type.

Harper and Lillibridge [9] and independently Leroy [13] further explore this idea in a new
treatment of the Standard ML module system. In their approach, structures have weak sum types
and act as first-class values. Thus stratification of types into different universes of “small” types
and “large” strong sum types is no longer necessary. Furthermore, signatures may contain mani-

fest type specifications that express constraints on types in structures or functors. This treatment

Fω
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simplifies the sharing constraint mechanism of the Standard ML module system and supports
true separate compilation.

In the remainder of this paper, Section 2 describes an extension of algebraic data types with
existential quantification. Section 3 presents a system of abstract record types with a dot notation
for field selection. Section 4 contains a collection of examples. Section 5 introduces the underlying
formal language, ExML. Section 6 and Section 7 discuss a type system and a type inference algo-
rithm for ExML. Section 8 presents a denotational semantics for ExML, and Section 9 concludes.

2 Making Algebraic Data Types Abstract

This section illustrates how abstract data types can be provided in the form of algebraic data types
with existentially quantified component types. While our extension can be applied to any lan-
guage based on a polymorphic type system with algebraic data types and explicit type variables,
it has been implemented in the Caml Light compiler for ML [15], and all examples are given in
Caml syntax. (See [8] for an introduction to ML.)

An algebraic data type declaration is of the form

type = of | | of

where the ’s are value constructors and the optional prefix argument args is used for formal type

parameters that may appear free in the component types . The value constructor functions are

universally quantified over these type parameters, and no other type variables may appear free
in the ’s.

The extension we propose works as follows: without altering the type declaration syntax, we
give a meaning to type variables that appear free in the component types, but not in the type
parameter list. We interpret such type variables as existentially quantified. 

For example, the type declaration

type KEY = Key of 'a * ('a -> int)

describes a data type with one value constructor whose components are pairs of a value of type
'a  and a function from type 'a  to int . The question is what we can say about the existentially
quantified type variable 'a . The answer is, nothing, except that it ensures that the type of the
value is the same as the domain of the function. To illustrate this further, the type of the expression

Key(3,fun x -> 5)

is KEY, as is the type of the expression

Key([1,2,3],list_length)

where length  is the built-in function on lists. Note that no argument types appear in the result
type of the expression. On the other hand,

Key(3,list_length)

args[ ] T K1 τ1 … Kk τk

K

τi

τi
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is not type-correct since the type of 3 is different from the domain type of list_length .
We recognize that KEY is an abstract type comprised by a value of some type and an operation

on that type yielding an int . It is important to note that values of type KEY are first-class: they
may be created dynamically and passed around freely as function parameters. The two different
values of type KEY in the previous examples may be viewed as two different implementations of
the same abstract type.

Besides constructing values of data types with existential component types, we can decompose
them using a let -expression with pattern matching. We impose the restriction that a type vari-
able that is existentially quantified in a let -expression must not appear in the result type of the
expression or in the type of a global identifier. Analogous restrictions hold for the corresponding
open  and abstype  constructs for existential types (see [4, 22] for further discussion).

For example, assuming x  is of type KEY, then

let (Key(v,f) ) = x in f v

has a well-defined meaning, namely the int  result of f  applied to v. We know that this applica-
tion is type-safe: the pattern matching succeeds since x  was constructed using the constructor Key,
and at that time it was enforced that f  could safely be applied to v. On the other hand, 

let (Key(v,f) ) = x in v

is not type-correct since we do not know the type of v  statically and, consequently, cannot assign
a type to the whole expression.

Our extension allows us to deal with existential types, with the further improvement that
decomposed values of existential type are let -bound and may be instantiated polymorphically.
This is illustrated by the following example,

type ' a T = K of ('a -> 'b) * ('b -> int)

let (K(f,g) ) = K ((fun x -> x), (fun x -> 3)) in
g(f true) = g(f 7)

which results in true . In most prior work, the value on the right-hand side of the binding would
have to be bound and decomposed twice.

3 Abstract Records and the Dot Notation

MacQueen [16] observes that the use of existential types in connection with an elimination con-
struct (open , abstype , or our let ) is impractical in certain programming situations. Often, the
scope of the elimination construct has to be made so large that some of the benefits of abstraction
are lost. In particular, the lowest-level entities have to be opened at the outermost level. These are
the traditional disadvantages of block-structured languages as compared to modular ones.

To overcome these problems, Cardelli and Leroy [3] propose a dot notation for existential
types. We use this notation in our proposal and show that it can be combined with polymorphic
type inference. We model abstract types as record types with existentially quantified component



Läufer and Odersky Polymorphic Type Inference and Abstract Data Types

Page 7 of 29

types. Values with abstract components are created by record construction and decomposed by
record field selection. This mechanism provides comparable expressiveness to modules in Mod-
ula-2, with the crucial difference that records are first-class values. (See Appendix B for a formal
treatment of a “dotless” dot notation in ML.)

Informally, fields selected from the same record identifier are always given compatible abstract
types. We can extend this rule to nested records; fields selected from identical access paths are then
given compatible abstract types. However, we disallow field selection from arbitrary record
expressions since we cannot determine statically when two abstract types have compatible repre-
sentations. This point is further discussed by Leroy [13]. 

The following examples illustrate the dot notation in ML syntax. We start with a record type
with existentially quantified component types:

type KEY = {x : 'a; f : 'a -> int}

In the first expression,

let z = {x = 3, f = fun x -> x + 2} in
z.f z.x

the existential type variable in the type of f  is the same as the one in the type of x , and the function
application produces a result of type int . This follows from the fact that both f  and x  are selected
from the same record identifier, z . Consequently, their types must be compatible, and the whole
expression is type-correct. 

On the other hand, the following expressions are not type-correct. For instance,

let z = {x = 3, f = fun x -> x + 2} in
z.f

is incorrect since the existential type variable in the type of f  escapes the scope of z . So is

let z = {x = 3, f = fun x -> x + 2} in
let y = z in

z.f y.x

because different identifiers are given different private types. As we cannot determine statically
that they hold the same values in this case, we must assume that the values have different types.

Our last example involves nested records:

type NEST = {k1, k2 : KEY}

let z = {x = 3, f = fun x -> x + 2} in
let n = {k1 = z, k2 = z} in

...

While the application n.k1.f n.k1.x  would be type-correct in the context of these definitions,
the similar expression n.k1.f n.k2.x  would not since we cannot guarantee statically that both
n.k1  and n.k2  have the same representation type.
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4 Examples

The following examples have been developed and tested using the Caml Light system [15]. (See
[11] for additional examples).

Minimum over a heterogeneous list

Given the type declaration from Section 2,

type KEY = Key of 'a * ('a -> int)

we define a heterogeneous list whose elements are of type KEY along with some auxiliary func-
tions. Caml uses semicolons to separate list elements.

let I x = x
let b2i b = if b then 1 else 0

let ks = [Key(7,I); Key([1;2;3],list_length); Key(true,b2i)]

We then define a function that takes a value of type KEY and applies the second component (the
function) to the first component (the value):

let key(Key(x,f)) = f x

Finally, we define a function that returns the smallest element of a list of KEYs with respect to the
integer obtained by applying the function key  to the elements:

let rec min = fun [x] -> x
| (x :: xs) -> let y = min xs in

if key x < key y then x else y

Then the expression key(min ks)  evaluates to 1.

Multiple existentially quantified type variables

It is permitted to have more than one existentially quantified type variable in the component type
of a value constructor, as illustrated by the following example:

type MULTI = Multi of 'a * 'b * ('a -> 'b -> int)

let multi(Multi(x,y,f) ) = f x y

let multiList =
[Multi(3, 4, prefix +);

Multi([1;2;3], [4;5], (fun x y -> list_length (x @ y)));
Multi([7;8;9], 10, (fun x y -> list_length x + y))]

The application map multi multiList  then results in the list [7;5;13] . The expression
prefix +  in Caml syntax is equivalent to op +  in Standard ML and turns the operator + into a
prefix function symbol.
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Lists of composable functions

The algebraic data types in the preceding examples each have only one constructor. Data types
with several constructors are possible as well; any existentially quantified type variables are local
to the component type of the constructor in which they appear. The following type describes lists
of functions, in which the type of each function would allow it to be composed with the next:

type ('a,'b) FUNLIST = FunCons of ('a -> 'c) * ('c,'b) FUNLIST
| FunNil of 'a -> 'b

This type combines universal and existential quantification. The universally quantified type vari-
ables 'a  and 'b  correspond to the argument type of the first and the result type of the last func-
tion, respectively; the existentially quantified type variable 'c  represents the intermediate types
arising during the composition of two functions. We can now construct lists of composable func-
tions, for example:

let twice x = 2 * x
let equal x y = x = y
let double x = (x, x)

let funNil = FunNil (fun x -> x)
let fl = FunCons(twice, FunCons(equal 4, FunCons(double, funNil)))

We would like to write a function that applies a list of functions to an argument. The first, naive
attempt fails since the type of apply  in the recursive call is different from the type of apply  on
the left-hand side. This form of polymorphic recursion is not permitted in ML:

let rec apply = fun (FunNil f) x -> f x
| (FunCons(f,fl)) x -> apply fl (f x)

We can overcome this problem by encapsulating the function list and its argument in another
abstract type:

type 'b FUNAPPL = FunAppl of ('a,'b) FUNLIST * 'a

Thus the recursion in the following definition of apply'  is now monomorphic as both occur-
rences have type 'b FUNAPPL -> 'b , and we define apply  in terms of apply' :

let rec apply' =
fun (FunAppl(FunNil f,x)) -> f x

| (FunAppl(FunCons(f,fl),x)) -> apply'(FunAppl(fl,f x))

let apply f l x = apply'(FunAppl(fl,x))

Evaluation of the expression apply  fl  2 then results in (True,  True) .

Stacks parameterized by element type

This example demonstrates how universal and existential quantification can be combined in
abstract container types. We first define an abstract record type STACK with existentially quanti-
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fied component types. The advantage over a tuple type is that we can refer to the components by
name.

type 'a STACK =
{Self : 'b;

Push : 'a -> 'b -> 'b;
Pop : 'b -> 'b;
Top : 'b -> 'a;
Null : 'b -> bool}

An on-the-fly implementation of an int  STACK in terms of the built-in type list  can be given as

{Self = [1;2;3]; Push = (fun x xs -> x :: xs);
Top = hd; Pop = tl; Null = (fun xs -> xs = [])}

For the systematic implementation of stacks, we provide a constructor function for each imple-
mentation, one based on lists,

let makeListStack xs =
{Self = xs;

Push = (fun x xs -> x :: xs);
Top = hd;
Pop = tl;
Null = (fun xs -> xs = [])}

and one on arrays:

let makeArrayStack xs =
{Self = vect_of_list (rev xs);

Push = (fun x v -> concat_vect v [| x |]);
Top = (fun v -> vect_item v (vect_length v - 1));
Pop = (fun v -> sub_vect v 0 (vect_length v - 1));
Null = (fun v -> vect_length v = 0)}

For dynamic dispatching, we write stack functions that work uniformly across implementations.
These “wrapper” functions work by decomposing a value of type STACK, applying the intended
“inner” operation to the Self  component, and constructing a new value with an updated Self

component.

let push x {Self=s; Push=p; Pop=o; Top=t; Null=n} =
{Self=p x s; Push=p; Pop=o; Top=t; Null=n}

When the result type of an operation is not abstract, no encapsulation is necessary:

let top {Self=s; Push=p; Pop=o; Top=t; Null=n} = t s

We can combine different implementations in a heterogeneous list of stacks and apply the wrap-
per functions to each element in the list. For example, the expression

map top (map (push 1) [makeListStack[2;3;4]; makeArrayStack[5;6;7]]

evaluates to [1;1] .
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Parameterized stacks in the dot notation

The dot notation lets us express the stack wrapper functions much more elegantly. We rewrite the
push  wrapper function to update the Self  component by applying the inner Push  operation.
Similarly, the new top  wrapper function applies the inner Top  operation to the Self  component.
The keyword with  is not part of Caml; we use it here to express component-wise, non-destructive

record update.

let push x s = s with {Self = s.Push x s.Self}
let top s = s.Top s.Self

5 The Language ExML

ExML is an extension of Mini-ML [5] with user-defined algebraic data types. In addition to the

usual constructs (identifiers, applications, λ-abstractions, and let-expressions), we introduce
sugar-free versions of the ML constructs that deal with data types. A data-declaration introduces
a new recursive data type; values of this type are created by applying a constructor , their tags

can be inspected using an is-expression, and they can be decomposed by a pattern-matching let-
expression. Names , needed in the definition of type environments, include identifiers  and

value constructors . The syntax of ExML expressions is given in Figure 1. 

The syntax of ExML types includes recursive algebraic data types  and Skolem types ; the

Type variables

Skolem types

Recursive types =

Types =  |  |  |  |  |  | 

Existential types =  | 

Type schemes =  | 

Constructors

Identifiers

Names =

Expressions =  |  |  | 

|  |  |  | 

Figure 1: Syntax of ExML types and expressions

K

z x

K

α β,

κ

χ µβ.K1η1 … Kkηk+ +

τ unit bool α τ1 τ2× τ1 τ2→ χ κ τ1 … τn, ,( )

η α.η∃ τ

σ α.∀ σ τ

K

x y,

z x y K, ,

e x e1e2( ) λx.e let x e1= in e2

data σ in e K is K let K x e1= in e2

χ κ
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latter are used to type identifiers that are bound by a pattern-matching let-expression and whose
type is existentially quantified. Explicit existential types  arise only as domain types of value

constructors. The syntax of ExML types is included in Figure 1.
The match -expression in source-level Caml syntax corresponds to nested if-expressions with

is-expressions as conditions and pattern-matching let-expressions for the different cases. The fol-
lowing ML example

type ' a T = K of 'a | L of int * 'a T | M
...
match x with K y -> 1

| L(y,z) -> y
| M -> 0

can be written in ExML as follows, assuming that type int is defined:

data  

in ...
if is K x then 1
else if is L x then let L z = x in fst z

else 0

ExML lacks special syntax for mutually recursive type declarations since mutual recursion in
algebraic data types does not add any expressive power to a language that already supports ordi-

nary µ-recursion. This is an application of Bekić’s theorem, which states that a group of mutually

recursive declarations can be replaced with several µ-recursive declarations by successive elimi-
nation (see [29] for details). The following example illustrates this transformation; the source-level
ML type declarations

type S = SNil | SCon o f S | SMut of T
type T = TNil | TCon o f T | TMut of S

translate to the following equivalent ExML declarations:

6 The Type System of ExML

In this section, we present the type system of ExML. Our system is deterministic and syntax-
directed, thus there is exactly one type rule for each syntactic construct. A (type) environment is a
finite mapping  from names to type schemes. Value constructors are

mapped to the recursive type schemes to which they belong;  is the type scheme  such that

. The domain of  is . The extension 

η

α.∀ µβ.Kα L int β×( ) M unit+ +

data µβS.SNil unit SCon βS SMut µβT.TNil unit TCon βT TMut βS+ +( )+ + in

data µβT.TNil unit TCon βT TMut µβS.SNil unit SCon βS SMut βT+ +( )+ + in…

A z1:σ1 … zn:σn, ,[ ]=

A K( ) σ
σ α1…αn.∀ … Kη …+ += A Dom A( ) z1 … zn, ,{ }= A z:σ[ ]
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is a new environment that maps  to  and all  in  to . The free type variables in 

are given by . The free Skolem types in a type  are given by

;  generalizes to environments analogously to .

The auxiliary predicates and functions in Figure 2 are used in the type inference rules. The
predicates  and  describe instantiation of type schemes and generalization of existential types,

respectively. The corresponding functions  and  replace the bound type variables in

type schemes and existential types with fresh type variables and are used in the type inference
algorithm (see Section 7). The function  universally quantifies all free variables in a type that

are not free in the environment. Finally, the function  replaces all bound type variables in an

existential type by fresh Skolem type constructors that are parameterized by the free type vari-
ables in the environment. 

The four typing rules shown in Figure 3 are the same as in the Mini-ML system. They are used
in the typing of variables, abstractions, applications, and let-expressions.   

Four new rules are given in Figure 4; they are used to type data type declarations, value con-
structors, is-expressions, and pattern-matching let-expressions. We explain each of the new rules
in turn: 

iff there are types  such that 

 and 

iff there are types  such that 

 and 

=  where  are fresh type vars

=  where  are fresh type vars

=  where 

=  where  are fresh Skolem type 

constructors such that  and 

Figure 2: Auxiliary predicates and functions for type inference

z σ z' Dom A( ) A z'( ) A

FV A( ) FV A z1( )( ) … FV A zn( )( )∪ ∪= τ

FS τ( ) FS FV

≥ ≤

inst∀ inst∃

gen

skol

α1…αn.∀ τ α'1…α'm.∀ τ'≥ τ1…τn

τ' τ1 α1⁄ … τn αn⁄, ,[ ]τ=

FV α1…αn.∀ τ( ) α'1 … α'm, ,{ }∩ ∅=

α1…αn.∃ τ α'1…α'm.∃ τ'≤ τ1…τn

τ' τ1 α1⁄ … τn αn⁄, ,[ ]τ=

FV α1…αn.∃ τ( ) α'1 … α'm, ,{ }∩ ∅=

inst∀ α1…αn.∀ τ( ) β1 α1⁄ … βn αn⁄, ,[ ]τ β1…βn

inst∃ α1…αn.∃ τ( ) β1 α1⁄ … βn αn⁄, ,[ ]τ β1…βn

gen A τ,( ) α1…αn.∀ τ α1 … αn, ,{ } FV τ( ) FV A( )–=

skol A β1…βm.∃ τ,( ) κi α1 … αn, ,( ) βi⁄[ ]τ κ1…κm

FS A( ) κ1 … κm, ,{ }∩ ∅=

α1 … αn, ,{ } FV β1…βm.∃ τ( ) FV A( )–=
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The DECL rule elaborates a recursive data type declaration . It adds the new out-

ermost constructors  to the environment as belonging to type . It also guarantees that

 does not contain any free type variables. 

The PACK rule assigns a type to a constructor  by looking up in the environment the recur-

sive type to which  belongs. By generalizing the component type  of the constructor to

the type  of the prospective argument, the rule observes that existential quantification in argu-

ment position means universal quantification over the whole function or constructor type.
The TEST rule ensures that the predicate  is applied only to arguments whose type  is an

instance of the result type of the constructor .

Finally, the OPEN rule governs the typing of pattern-matching let-expressions. It requires that
the expression  be an instance of the result type  of the constructor . It then types the body

 under the environment extended with a typing for the bound identifier , whose type is a

Skolemized, generalized version of the component type of . The new Skolem types 

must not appear in ; this ensures that they do not appear in the type of any identifier free in 

other than . The rule also guarantees that the Skolem types do not appear in the result type . 

VAR APP

ABS LET

Figure 3: Type inference rules for Mini-ML expressions

DECL

PACK

TEST

OPEN

Figure 4: Type inference rules for ExML expressions involving existential types

A x( ) τ≥
A |− x : τ----------------------

A |− e1 : τ2 → τ1 A |− e2 : τ2

A |− e1 e2( ) : τ1
------------------------------------------------------------------------------------

A x:τ1[ ] |− e : τ2

A |− λx.e : τ1 τ2→
-----------------------------------------------

A |− e1 : τ1 A x:gen A τ1,( )[ ] |− e2 : τ2

A |− let x e1= in e2 : τ2
---------------------------------------------------------------------------------------------------------

A K1:σ … Kk:σ, ,[ ] |− e : τ FV σ( ) ∅= σ α1…αn.∀ K1η1 … Kkηk+ +=

A |− data σ in e : τ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

A K( ) χ≥ χ β⁄[ ]η τ≤ χ µβ.… Kη …+ +=
A |− K : τ χ→---------------------------------------------------------------------------------------------------------------------------------------

A K( ) χ≥ χ µβ.… Kη …+ +=
A |− is K : χ bool→-------------------------------------------------------------------------------------------

A |− e1 : χ χ µβ.… Kη …+ +=

A x:gen A skol A χ β⁄[ ]η,( ),( )[ ] |− e2 : τ FS τ( ) FS A( )⊆
A |− let K x e1= in e2 : τ

--------------------------------------------------------------------------------------------------------------------------------------------------

data σ in e

K1 … Kk, , σ

σ

K

K χ β⁄[ ]η

τ

is K χ
K

e1 χ K

e2 x

K κ1 … κm, ,

A e2

x τ
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The DECL rule does not prohibit nesting undeclared recursive types within the data type being
declared. As a consequence of the PACK rule, however, values of the nested data type can only be
constructed if its outermost value constructors have already been put in the environment by a pre-
ceding application of the DECL rule. Furthermore, if the same value constructor is redeclared in
a subsequent data type declaration, then that declaration hides the first one. Therefore a recursive
data type comes into existence only by the presence of its outermost value constructors in the
environment. This mechanism corresponds to generativity in ML.

The following theorem states that ExML is a conservative extension of Mini-ML:

Theorem 6.1 For any Mini-ML expression ,  iff .

Proof: By structural induction on .

The theorem still holds if we extend Mini-ML to include recursive data types and pattern-
matching let-expressions without existential quantification. 

7 Computing Principal Types for ExML

In this section, we present the type inference algorithm  for ExML and show its correctness.

We start out with some definitions. For an environment  and a substitution , we define

. We call  a closed environment if . The free variables

of a substitution  are given by

.

The algorithm  follows the syntax-directed type inference rules, hence there is one case for

each rule.  takes as arguments the current substitution, the current environment, and the

expression to be typed; it returns the new substitution and the inferred type of the expression. The
four cases in Figure 5 are identical to algorithm  [6]. The four additional cases given in Figure 6

deal with data type declarations, value constructors, is-expressions, and pattern-matching let-
expressions:  

The “data” case adds the new outermost constructors  in a recursive data type dec-

laration to the environment and checks that the new type does not contain any free type variables.
The “ ” case first looks up the data type  to which the constructor  belongs. It then gen-

eralizes the component type of  and instantiates the result type  with fresh type variables.

The assigned type guarantees that the constructor  is applied only to arguments whose type is

a generalization of the component type of .

Similarly, the “ ” case looks up the data type  and instantiates this type with fresh type

variables. The assigned type guarantees that the predicate  is applied only to arguments

whose type is an instance of the result type of .

e A |− e : τ A |−Mini-ML e : τ

e

W∃

A θ

θA x:θ A x( )( ) x Dom A( )∈[ ]= A FV A( ) ∅=

θ

FV θ( ) Dom θ( ) FV θα( )
α θ∈

∪∪=

W∃

W∃

W

K1 … Kk, ,

K A K( ) K

K A K( )

K

K

is K A K( )

is K

K
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Finally, the “ ” case assigns a type to a pattern-matching let-expression. It requires that the

expression  be an instance of the result type  of the constructor . It then types the body 

under an extended environment, where the of the bound identifier  is a Skolemized version of

the argument type of . This case also checks that the new Skolem types  do not appear

in  or in the result type  of .

The remainder of this section presents the lemmas and theorems needed to establish the sound-
ness and completeness of the algorithm. (See [11] for proofs).

Lemma 7.1 If , then .

Proof: By induction on the structure of .

Theorem 7.2 (Syntactic soundness of algorithm ) If , then .

Proof: By induction on the structure of , using Lemma 7.1.

Definition 7.3 Let  be a closed environment. The type  is a principal type of an expression  if 

 and if  implies .

Lemma 7.4 If  where , then  and there exists a  such 

:

=

= let

fresh

in

= let fresh

in

 = let in

Figure 5: Type inference algorithm for Mini-ML expressions

W∃ Sub Env Exp×× Sub Type×→

W∃ θ A x, ,( ) θ inst∀ A x( )( ),( )

W∃ θ A, e1e2( ),( ) θ1 τ1,( ) W∃ θ A, e1,( )=

θ2 τ2,( ) W∃ θ1 A, e2,( )=

α
θ' mgu θ2τ1 θ2τ2 α→=( )=

θ'θ2 α,( )

W∃ θ A, λx.e,( ) α

θ' τ,( ) W∃ θ A x:α[ ] e, ,( )=

θ' α τ→,( )

W∃ θ A, let x e1= in e2,( ) θ1 τ1,( ) W∃ θ A e1, ,( )=

W∃ θ1 A x:gen θ1A θ1τ1,( )[ ] e2,,( )

let K

e1 χ K e2

x

K κ1 … κm, ,

A τ e2

A |− e : τ θA |− e : θτ

e

W∃ W∃ θ A e, ,( ) θ' τ,( )= θ'A |− e : θ'τ

e

A τ e

A |− e : τ A |− e : τ' gen A τ,( ) τ'≥

A' |− e : τ' A' δ'θA= W∃ θ A e, ,( ) θ1 τ1,( )= δ1
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that  and .

Proof: By induction on the structure of .

Theorem 7.5 (Syntactic completeness and principal types) If  and  is closed, then 

 and  is a principal type of .

Proof: Follows from Lemma 7.4.

8 A Formal Semantics for ExML

In this section, we present a standard denotational semantics of ExML and show that our type sys-
tem is sound with respect to this semantics. 

The evaluation function  maps an expression  to some semantic value , in the context of an

evaluation environment . An evaluation environment is a partial mapping from identifiers to

semantic values. Tagged values are used to capture the semantics of algebraic data types. We dis-
tinguish between three error situations: run-time type errors (wrong), nontermination ( ), and a

mismatch (fail) when an attempt is made to decompose a tagged value whose tag does not match

= let in

if then

= let

in

=

= let

in
if

then

Figure 6: Type inference algorithm for ExML expressions involving existential types

W∃ θ A data σ in e, ,( ) σ α1…αn.∀ µβ.K1η1 … Kkηk+ +=

FV σ( ) ∅= W∃ θ A K1:σ … Kk:σ, ,[ ] e,,( )

W∃ θ A, K,( ) χ inst∀ A K( )( )=

µβ.… Kη …+ + χ=

θ inst∃ χ β⁄[ ]η( ) χ→,( )

W∃ θ A, is K,( ) θ inst∀ A K( )( ) bool→,( )

W∃ θ A, let K x e1= in e2,( ) θ1 χ,( ) W∃ θ A e1, ,( )=

µβ.… Kη …+ + χ=

τ1 skol θ1A θ1 χ β⁄[ ]η( ),( )=

θ2 τ2,( ) W∃ θ1 A x:gen θ1A τ1,( )[ ] e2, ,( )=

FS θ2τ2( ) FS θ2A( )⊆ ∧

FS τ1( ) FS θ1 χ β⁄[ ]η( )( )–( ) FS θ2A( )∩ ∅=

θ2 τ2,( )

A' δ1θ1A= τ' δ1θ1τ1=

e

A |− e : τ' A

W∃ ∅ A e, ,( ) θ τ,( )= θτ e

E e v

ρ

⊥
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the tag of the destructor.
Our type inference system is sound with respect to the evaluation function: a well-typed pro-

gram never evaluates to wrong. The formal proof of semantic soundness is given below.
The semantic domains of ExML are shown in Figure 7. In the definition of ,  stands for the

coalesced sum so that all types over  share the same  and fail values. The semantic function 

for ExML expressions is given in Figure 8. Although  is strict in both  and fail to model the

semantics of the ML language, our soundness considerations are orthogonal to the issue of strict-
ness. 

We identify types with weak ideals [17] over the semantic domain . A type environment  is

a partial mapping from type variables to ideals and from Skolem type constructors to functions
between ideals. The semantic interpretation of types is defined in Figure 9. The universal and exis-
tential quantifications range over the set  of all ideals that do not contain wrong. 

It should be noted that our interpretation handles only µ-recursive data types, which can
always be expressed in the form . Nonregular data types, such as

type 'a NONREG = Leaf | Node of 'a * ('a NONREG) NONREG

would require recursion over type constructors. An adequate semantics for nonregular types can
be given by extending the weak ideal model [1]; the machinery for this extension is given by Plot-
kin [26].

Theorem 8.1 The semantic function for types is well-defined.

Proof: All type expressions are formally contractive [17], hence the fixed points exist.

Definition 8.2 (Semantic type judgment) Let  be an assumption set,  an expression, and  a 

type scheme. 

(i)  means that for every ,  and ;

(ii)  means that  implies ; and

Unit domain =

Boolean domain =

Constructor tags =

Semantic domain ≅

Figure 7: Semantic domains

V +

V ⊥ E

U unit{ }⊥ fail,

B false true,{ }⊥ fail,

T K1 K2 …, ,{ }⊥ fail,

V U B T V V→( ) V V×( ) wrong{ }⊥ fail,+ + + + +

E ⊥

V ψ

ℜ ℑ V( )⊆

α1…αn.∀ µβ.K1η1 … Kkηk+ +

A e σ

|=ρ ψ, A x Dom A( )∈ x Dom ρ( )∈ ρ x( ) T [ A x( ) ][ ]ψ∈

A |=ρ ψ, e : σ |=ρ ψ, A E [ e ][ ]ρ T [ σ ][ ]ψ∈
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(iii)  means that  for all  and .

Theorem 8.3 (Semantic soundness) If , then .

Proof: By induction on the structure of the proof tree for . See Appendix A for a proof 

sketch. 

Corollary 8.4 If  and , then .

9 Conclusion

We have demonstrated how light-weight abstract data types with first-class implementations can
be integrated into any functional language with a static, polymorphic type system, explicit type
variables, and algebraic data type declarations, regardless of strictness considerations. We have
shown how abstract data types add significant flexibility and expressiveness to a language with-
out even changing its syntax. We have presented a type system that extends the Damas-Milner
system with existentially quantified component types of data and record types, have given a type
inference algorithm, and have proved that the type system is semantically sound.

The work on first-class modules by Harper and Lillibridge [9] and independently Leroy [13]

:

=

=

=

=

=

=

=

 =

Figure 8: Semantic function for expressions

E Exp EEnv V→ →

E [ x ][ ]ρ ρ x( )

E [ e1e2 ][ ]ρ if E [ e1 ][ ]ρ V V→∈ then

E [ e1 ][ ]ρ( ) E [ e2 ][ ]ρ( )

else wrong

E [ λx.e ][ ]ρ λv V∈ .E [ e ][ ]ρ x:v[ ]

E [ let x e1= in e2 ][ ]ρ E [ e2 ][ ]ρ x:E [ e1 ][ ]ρ[ ]

E [ data σ in e ][ ]ρ E [ e ][ ]ρ

E [ K ][ ]ρ λv V∈ . K v,ÿ þ

E [ is K ][ ]ρ λv V∈ .v K{ } V×∈

E [ let K x e1= in e2 ][ ]ρ E [ e2 ][ ]ρ[x: if E [ e1 ][ ]ρ K{ } V×∈ then

snd E [ e1 ][ ]ρ( )

else fail]

A |= e : τ A |=ρ ψ, e : σ ρ EEnv∈ ψ TEnv∈

A |− e : τ A |= e : τ

A |− e : τ

A |− e : τ |=ρ ψ, A E [ e ][ ]ρ wrong≠
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can provide alternative solutions to the problems that motivated our proposal. However, modules
are rather heavy semantic machinery for expressing first-class abstract data types. By contrast, our
data and record types with existentially quantified component types have quite a different flavor:
they provide light-weight abstract types with an easily understandable semantics directly in the
functional core of a language. It might thus be desirable to include both proposals in the same lan-
guage and even to allow some redundancy between the core and module languages.
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A Proof of Semantic Soundness

We will use the following two lemmas in our proof:

Lemma A.1 Let  be a type environment such that for every , . Then 

for every type scheme , .

Proof: By structural induction on .

Lemma A.2 (Substitution) 

Proof: By structural induction on .

Proof: To prove Theorem 8.3, we consider each of the cases given by the type inference rules. 
Applying the inductive assumption and the typing judgments from the preceding steps in the 

ψ α Dom ψ( )∈ wrong ψ α( )∉

σ wrong T [ σ ][ ]ψ∉

σ

T [ σ' α⁄[ ]σ ][ ]ψ T [ σ ][ ]ψ α:T [ σ' ][ ]ψ[ ]=

σ
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type derivation, we use the semantics of the types of the partial results of the evaluation. In each 
of the cases below, choose  and  arbitrarily such that . We include only the four new 

cases. Lemma A.2 will be used with frequency.

The premises in the type derivation are  and 

. By definition, , and by the 

inductive assumption, .

The premises are  and , where  and 

. By definition,  for some types . First, choose an 

arbitrary  and a finite . Then 

∈

=

⊆

=

=

Hence  by the closure of ideals under limits. 
Thus

∈

⊆

=

=

and .

Since  for any , we have .

We follow the proof by MacQueen, Plotkin, and Sethi [17]. We know that , where 

 and . Let . Then 

 holds for every  since none of the ’s is free in .

Let , thus by the inductive assumption, . Since 

 for any weak ideals  and , we have

ψ ρ |=ρ ψ, A

A |− data σ in e : τ
A K1:σ … Kk:σ, ,[ ] |− e : τ

σ α1…αn.∀ µβ.K1η1 … Kkηk+ += |=ρ ψ, A K1:σ … Kk:σ, ,[ ]

E [ data σ in e ][ ]ρ E [ e ][ ]ρ= T [ τ ][ ]ψ∈

A |− K : τ χ→
A K( ) χ≥ χ β⁄[ ]η τ≤ χ µβ.… Kη …+ +=

η β1…βm.∃ τ̃= τ τi βi⁄ χ β⁄,[ ]τ̃= τ1 … τm, ,

v T [ τ ][ ]ψ∈ a v≤

a T [ τi βi⁄ χ β⁄,[ ]τ̃ ][ ]ψ( )°

T [ χ β⁄[ ]τ̃ ][ ]ψ βi:T [ τi ][ ]ψ[ ]( )°

T [ χ β⁄[ ]τ̃ ][ ]ψ βi:Ji[ ]( )°
J1 … J, , ℜ∈

∪

��
J1 … Jm, , ℜ∈

T [ χ β⁄[ ]τ̃ ][ ]ψ βi:Ji[ ]( )°

T [ χ β⁄[ ]η ][ ]ψ( )°

v �� a a finite a v≤∧{ } T [ χ β⁄[ ]η ][ ]ψ∈=

K v,ÿ þ K{ } T [ χ β⁄[ ]η ][ ]ψ×

… K{ } T [ χ β⁄[ ]η ][ ]ψ× …∪ ∪

T [ … Kη …+ + ][ ]ψ β:T [ χ ][ ]ψ[ ]

T [ χ ][ ]ψ

E [ K ][ ]ρ T [ τ χ→ ][ ]ψ∈

A |− is K : χ bool→
E [ is K ][ ]ρ( )v B∈ v T [ χ ][ ]ψ∈ E [ is K ][ ]ρ T [ χ bool→ ][ ]ψ∈

A |− let K x e1= in e2 : τ

A |− e1 : χ

χ µβ.… Kη …+ += η β1…βm.∃ τ̃= α1 … αn, ,{ } FV χ β⁄[ ]η( ) FV A( )–=

|=ρ ψ αi:Ii[ ], A I1 … In, , ℑ V( )∈ αi A

v E [ e1 ][ ]ρ= v T [ χ ][ ]ψ αi:Ii[ ]∈

I �� J I J∩= I J
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∈

=

In the case ,  and we are done.

In the more interesting case , where

Let  be those variables among  that are free in , where . We 

choose a finite . Thus

∈

By definition of union and intersection, there exist functions  such 

that

∈

⊆

=

=

=

assuming that the ’s are the Skolem type constructors generated by .

Since none of the ’s are free in , we have  and we can extend  and  to 

obtain . By applying the inductive assump-

tion to the premise  and using , we 

obtain . Finally, by the continuity of ,

=

=

The latter expression is in  by the closure of ideals under limits.

v ��
I1 … In, , ℜ∈

T [ χ ][ ]ψ αi:Ii[ ]

… K{ } ��
I1 … In, , ℜ∈

T [ η ][ ]ψ αi:Ii β:T [ χ ][ ]ψ αi:Ii[ ],[ ]× …∪ ∪

fst v( ) K≠ E [ let K x e1= in e2 ][ ]ρ fail T [ τ ][ ]ψ∈=

K ṽ,ÿ þ=

ṽ ��
I1 … In, , ℜ∈

��
J1 … Jm, , ℜ∈

T [ τ̃ ][ ]ψ αi:Ii βj:Jj β:T [ χ ][ ]ψ αi:Ii[ ], ,[ ]∈

α1 … αh, , α1…αn χ β⁄[ ]τ̃ h n≤

a ṽ≤

a T [ χ β⁄[ ]τ̃ ][ ]ψ αi:Ii βj:Jj,[ ]( )°
J1 … J, , ℜ∈

∪
I1 … I, , ℜ∈

∩

f1 … fm, , ℑ V( )h ℑ V( )→∈

a ��
I1 … In, , ℜ∈

T [ χ β⁄[ ]τ̃ ][ ]ψ αi:Ii βj:fj I1 … Ih, ,( ),[ ]( )°

��
I1 … In, , ℜ∈

T [ χ β⁄[ ]τ̃ ][ ]ψ αi:Ii βj:fj I1 … Ih, ,( ),[ ]

��
I1 … In, , ℜ∈

T [ κj α1 … αh, ,( ) βj⁄ χ β⁄,[ ]τ̃ ][ ]ψ αi:Ii κj:fj,[ ]

T [ α1…αn∀ . κj α1 … αh, ,( ) βj⁄ χ β⁄,[ ]τ̃ ][ ]ψ κj:fj[ ]

T [ gen A skol A χ β⁄[ ]η,( ),( ) ][ ]ψ κj:fj[ ]

κj skol A χ β⁄[ ]η,( )

κj A |=ρ ψ κj:fj[ ], A A ρ

|=ρ a x⁄[ ] ψ κj:fj[ ], A x:gen A skol A χ β⁄[ ]η,( ),( )[ ]

A x:gen A skol A χ β⁄[ ]η,( ),( )[ ] |− e2 : τ FS τ( ) FS A( )⊆

E [ e2 ][ ]ρ x:a[ ] T [ τ ][ ]ψ κj:fj[ ]∈ T [ τ ][ ]ψ= E

E [ let K x e1= in e2 ][ ]ρ E [ e2 ][ ]ρ x:ṽ[ ]

�� E [ e2 ][ ]ρ x:a[ ] a finite a ṽ≤∧{ }

T [ τ ][ ]ψ
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B A “Dotless” Dot Notation in ExML

We formalize the dot notation presented in Section 3 in an extension of ExML called ExML°. As
records are merely named tuples and field selection is syntactic sugar for tuple component selec-
tion, abstract types are again modeled by data types with existentially quantified component
types. Values of abstract type are created by applying a constructor to a value and decomposed
by pattern-matching in a let-expression. However, we allow existentially quantified type vari-
ables to escape the scope of the identifier in whose type they appear as long as the expression
decomposed is an identifier and the existentially quantified type variables do not escape the scope
of that identifier. Each decomposition of an identifier, using the same constructor, produces iden-
tical Skolem type constructors. We call our notation a “dotless” dot notation since it uses decom-
position by pattern-matching instead of record field selection.

The type inference rules of ExML° are given in Figure 10. The VAR and APP rules are the same
as in the original system. The ABS and LET rules are modified to prevent Skolem type construc-
tors associated with a bound identifier to escape its scope. The DATA, PACK, and TEST rules
remain unchanged. Finally, the new OPEN rule prevents Skolem type constructors associated
with the bound identifier  from escaping their scope, but imposes no restrictions on Skolem type

constructors associated with , the identifier being decomposed. A type inference algorithm to

compute principal types can be obtained by straightforward modification of the algorithm dis-
cussed in Section 7. 

We retain our original semantic function  from Section 8. Following Cardelli and Leroy [3],

we prove semantic soundness by giving a type- and semantics-preserving translation to ExML.
The idea is that we can enclose any expression  with subexpressions of the form 

within an surrounding expression that defines  and replace each subexpression of the form

 by . That is, we replace  by

We chose the enclosing let-expression defining  large enough that no existentially quantified

type variables arising through the inner let-expressions escape this surrounding definition. Since
the ABS, LET, and OPEN rules guarantee that no existentially quantified variables emerging from
the decomposition of  escape the scope of , it is safe to enclose the whole body of a  or let-

expression. However, we must be careful, since the surrounding decomposition in the translation
might fail, while the enclosed decomposition in the original expression might not necessarily have
been reached; this is possible if the value held by  does not have the constructor tag . Therefore,

we need to replace  by an if-expression with branches for each possible constructor in the type

of . This is reflected in the definition of the auxiliary translation function . 

We modify the OPEN rule of ExML to use the function . This facilitates the translation

since the Skolem type constructors can be left unchanged in the translation of a type environment.
The translation and auxiliary functions are shown in Figure 11. In the remainder of this section,

y

x

E

e let K y = x in e'

y

let K y = x in e' e' e

let K y = x in e' let K y = x in e'⁄[ ]e

y

x x λ

x K

e

x branch

skolx K,



Läufer and Odersky Polymorphic Type Inference and Abstract Data Types

Page 26 of 29

we establish semantic soundness of ExML°. 

Lemma B.1 If  and , then 

.

Proof: Follows immediately using suitable typings for if and fail.

Lemma B.2 .

Proof: By definition of branch and trrun.

Theorem B.3 (Preservation of types) If , then .

Proof: By induction on the structure of . We consider the following cases:

The premises in the derivation are  and . By the 

inductive assumption, , and by Lemma B.1, 

. The claim follows by applying the original ABS 

rule.

VAR APP

ABS

LET

DECL

PACK

TEST

OPEN

Figure 10: Type inference rules for the dotless dot notation

A x( ) τ≥
A |−° x : τ-------------------------

A |−° e1 : τ2 → τ1 A |−° e2 : τ2

A |−° e1 e2( ) : τ1
-----------------------------------------------------------------------------------------

A x:τ1[ ] |−° e : τ2 FSx A( ) FSx τ2( )∪ ∅=

A |−° λx.e : τ1 τ2→
---------------------------------------------------------------------------------------------------------------------

A |−° e1 : τ1 A x:gen A τ1,( )[ ] |−° e2 : τ2 FSx A( ) FSx τ2( )∪ ∅=

A |−° let x e1= in e2 : τ2
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

A K1:σ … Kk:σ, ,[ ] |−° e : τ FV σ( ) ∅= σ α1…αn.∀ µβ.K1η1 … Kkηk+ +=

A |−° data σ in e : τ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

A K( ) χ≥ χ β⁄[ ]η τ≤ χ µβ.… Kη …+ +=
A |−° K : τ χ→---------------------------------------------------------------------------------------------------------------------------------------

A K( ) χ≥ χ µβ.… Kη …+ +=
A |−° is K : χ bool→-------------------------------------------------------------------------------------------

A x( ) χ≥ χ µβ.… Kη …+ +=

A y:gen A skolx K, A χ β⁄[ ]η,( ),( )[ ] |−° e : τ FSy A( ) FSy τ( )∪ ∅=

A |−° let K y x= in e : τ-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

trenv A x:σ[ ]( ) |− e : τ FSx A( ) FSx τ( )∪ ∅=

trenv A( ) x:σ[ ] |− branch e x,( ) : τ

E [ e ][ ]trrun ρ x:v[ ] e,( ) E [ branch e x,( ) ][ ]trrun ρ branch e x,( ),( ) x:v[ ]=

A |−° e : τ trenv A( ) |− trexp e( ) : τ

e

A |−° λx.e : τ1 τ2→

A x:τ1[ ] |−° e : τ2 FSx A( ) FSx τ2( )∪ ∅=

trenv A x:τ1[ ]( ) |− trexp e( ) : τ2

trenv A( ) x:τ1[ ] |− branch trexp e( ) x,( ) : τ2
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=

=

=

=

=

=

=

let  in 

let  in 

let  in 

where 

=

=  where 

, , 

, and 

=

=

=  where  if 

 and  otherwise and 

=

=  where

trexp e1 e2( ) trexp e1( ) trexp e2( )

trexp λx.e( ) λx.branch trexp e( ) x,( )

trexp let x e1= in e2( ) let x trexp e1( )= in branch trexp e2( ) x,( )

trexp data σ in e( ) data σ in trexp e( )

trexp let K y x= in e( ) let y xK= in branch trexp e( ) y,( )

trexp e( ) e

branch e x,( ) if is K1x then

K1xK1
x= fail xK2

⁄ … fail xKm
⁄, ,[ ]e

else if is K2x then

K2xK2
x= fail xK1

⁄ fail xK3
⁄ … fail xKm

⁄, , ,[ ]e

…
else if is Kmx then

KmxKm
x= fail xK1

⁄ … fail xKm 1–
⁄, ,[ ]e

else fail

K1 … Km, ,{ } K xK FV e( )∈{ }=

branch e x,( ) e

trenv A x:σ[ ]( ) trenv A( ) x:σ xK1
:σ1 … xKk

:σk, , ,[ ]

χ µβ.K1η1 … Kkηk+ += σ α1…αn.∀ χ=

σi gen A' skolx Ki, A' χ β⁄[ ]ηi,( ),( )= A' A x:σ[ ]=

trenv A x:σ[ ]( ) trenv A( ) x:σ[ ]

trenv []( ) []

trrun ρ x:v[ ] e,( ) trrun ρ e,( ) x:v xK1
:v1 … xKk

:vk, , ,[ ] vi snd x( )=

x Ki{ } V×∈ vi fail=

K1 … Km, ,{ } K xK FV e( )∈{ }=

trrun [] e,( ) []

skolx K, A β1…βm.∃ τ,( ) κx K i, , α1 … αn, ,( ) βi⁄[ ]τ

α1 … αn, ,{ } FV β1…βm.∃ τ( ) FV A( )–=
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The premises in the derivation are , , and 

. By the inductive assumption,  and 

. Thus by Lemma B.1, 

, and we can apply the original LET rule.

The premises in the derivation are  and , 

where . By the inductive assumption, 

. Thus by Lemma B.1, 

. Since , 

 and . The claim follows from the 

original LET rule.

Theorem B.4 (Preservation of semantics) .

Proof: By induction on the structure of . We abbreviate  as . The interesting cases are as 

follows:

:

=

=

=

=

:

=

=

=

=

:

Let . First, if , then 

. Otherwise, 

A |−° let x e1= in e2 : τ2

A |−° e1 : τ1 A x:gen A τ1,( )[ ] |−° e2 : τ2

FSx A( ) FSx τ2( )∪ ∅= trenv A( ) |− trexp e( ) : τ1

trenv A x:gen A τ1,( )[ ]( ) |− trexp e( ) : τ2

trenv A( ) x:gen A τ1,( )[ ] |− branch trexp e2( ) x,( ) : τ2

A |−° let K y x= in e : τ
A x( ) χ≥ A y:gen A skolx K, A χ β⁄[ ]η,( ),( )[ ] |−° e : τ

χ µβ.… Kη …+ +=

trenv A y:gen A skolx K, A χ β⁄[ ]η,( ),( )[ ]( ) |− trexp e( ) : τ

trenv A( ) y:gen A skolx K, A χ β⁄[ ]η,( ),( )[ ] |− branch trexp e( ) y,( ) : τ x Dom A( )∈

xK Dom trenv A( )( )∈ A xK( ) gen A skolx K, A χ β⁄[ ]η,( ),( )=

E [ e ][ ]ρ E [ trexp e( ) ][ ]trrun ρ trexp e( ),( )=

e trexp e( ) e

λx.e

E [ λx.e ][ ]ρ

λv V∈ . E [ e ][ ]ρ x:v[ ]( )

λv V∈ . E [ e ][ ]trrun ρ x:v[ ] e,( )( )
λv V∈ .E [ branch e x,( ) ][ ]trrun ρ branch e x,( ),( ) x:v[ ]

E [ λx.e ][ ]trrun ρ λx.e,( )

let x e1= in e2

E [ let x e1= in e2 ][ ]ρ

E [ e2 ][ ]ρ x:E [ e1 ][ ]ρ[ ]

E [ e2 ][ ]trrun ρ x:E [ e1 ][ ]trrun ρ e1,( )[ ] e2,( )

E [ branch e2 x,( ) ][ ]trrun ρ branch e2 x,( ),( ) x:E [ e1 ][ ]trrun ρ e1,( )[ ]

E [ let x e1= in branch e2 x,( ) ][ ]trrun ρ let x e1= in branch e2 x,( ),( )

let K y x= in e

ẽ let y xK= in branch e y,( )= ρ x( ) K{ } V×∉

E [ let K y x= in e ][ ]ρ fail E [ ẽ ][ ]trrun ρ ẽ,( )= =

E [ let K y x= in e ][ ]ρ
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=

=

=

=

=

Proof: Since all other cases are trivial, our claim is proved.

Corollary B.5 (Semantic soundness) If  and , then .

Proof: Follows from the previous theorem and Theorem 8.3.

E [ e ][ ]ρ y:snd ρ x( )( )[ ]
E [ e ][ ]trrun ρ y:snd ρ x( )( )[ ] e,( )

E [ branch e y,( ) ][ ]trrun ρ e,( ) y:snd ρ x( )( )[ ]

E [ branch e y,( ) ][ ]trrun ρ ẽ,( ) y:E [ xK ][ ]trrun ρ ẽ,( )[ ]

E [ ẽ ][ ]trrun ρ ẽ,( )

A |−° e : τ |=ρ ψ, A E [ e ][ ]ρ wrong≠


