Department of ’
Computer Science ans=oid

Research Areas

. Middleware tor Collaborative
meneaco DisStributed/Mobile Applications: XMPP or Reactive
HTTP?

Reactive HTTP

XMPP (WIP)

Context

Distributed Systems, Programming
Languages, Software Architecture,
Software Design Patterns

Objectives

Comparison of communication and
coordination middleware implementation
choices in collaborative distributed/mobile
applications.

« Static: Modularity/Testability,
Maintainability, Extensibility

« Dynamic: Reliability, Performance,
Scalability

Other criteria:

 Availability, quality, documentation and

command line

the context of collaborative apps)

Representative Use Case

Distributed click counter for soccer
stadium with multiple entrance doors

* Each client, one per entrance door,
sees the same shared state and can
increment or decrement it.

» Clients publish events as well as
subscribe to them.

« Simplistic but requires substantial
domain expertise.

Primary criteria: Software Quality Attributes

learning curve of Libraries/frameworks for
multiple clients: browser/JavaScript, i0S,

« Support for likely future requirements (in

« RESTful web service (HTTP/1.1)
implemented in Scala + spray

« JSON as the data (payload) format and
response streaming (server-sent events)

e communication end-to-end reactive
(asynchronous/nonblocking)

» scredis reactive/nonblocking driver for the
Redis key-value store

https://github.com/LoyolaChicagoCode/clickcounter-spray-scala
http://laufer-dev.cs.luc.edu:8080 <- running instance

pathPrefix("counters" | Segment) { id =>

path(”’increment”) {
post { /| whole computation runs in future!
oncomplete(repository.update(id, _.v + 1)) {
case Success(Some(true)) =>
complete(StatusCodes.NoContent)
case Success(Ssome(false)) =>
complete(StatusCodes.conflict, errorMsg)

}

* Android client using RxScala and homegrown
server-sent event client

https://github.com/LoyolaChicagoCode/clickcounter-android-rxsca

la-http <- download from here

/** The observable for the server-sent events. */
lazy val eventSource =
HttpEventSourceObservable.getObservable((int,
ModelState))
(url + "/counters/" + counterld + "[stream’’)
lazy val postObserver = new HitpPostObserver
(serviceUurl + "[counters/" + counterld + "[”’)

Scala Web Service
Common Data Storage

]
< ©
g
oD
n
i

Android Wall

Counter.set(2) Counter>>2

Counters>2 Counters=2

« Extensible Messaging and Presence Protocol
(XMPP): an open, extensible protocol for
device discovery and XML data interchange
in near real-time

* initially designed for inst. messaging

* handles broad range of middleware needs,
rich plugin ecosystem

* hosted or locally installed Jabber server
such as ejabberd

* Android client written in Scala and using
Smack, an open-source Java client library
for XMPP (work in progress)

https://github.com/briangathright/hello-xmpp-app <- WIP

muc.addMessagelistener(new Messagelistener {
override def processMessage(m: Message) = {
if (message.getBody = null) {
val from = XmppStringUtils.
parseResource(message.getrrom)
runonUithread {
updatelUi(message.getBody)

* requires additional, highly available
headless XMPP client to maintain counter
values in Redis key-value store

XMPP Server
(Jabber)

Android Wall
’?,———";__ ‘;‘:_

XMPP Client
Server Extension
Common Data
Storage

XMPP Client
Counter.set(2)

Counter>>2

XMPP Client XMPP Client
Counter>>2 | Counter>>2

This class of use cases has arisen in the
ongoing Android Wall project, where we
combine multiple low-cost, commodity tablet
devices to a cluster addressing a “trilogy” of
concerns: visualization, sensing, and
computation.

4x N7 Android Tablet Wall prototype with Raspberry Pi as server

SAMSUNG

« WiFi Direct: unlikely to scale beyond three
or four peers

« (Client connects directly to storage:
problem is driver availability for different
clients

« (Client connects to message queue?

Preliminary findings

« HTTP-based approach very scalable and
extensible to different clients

* Many libraries have heavyweight
dependencies for use in Android client

« Support for SSE still emerging

« XMPP-based approach has higher learning
curve but likelier to support future regs.

