
Programming with Structures, Functions, and Objects�

In Proceedings of the XVII. Latin American Informatics Conference (PANEL '91), July 1991

| Updated Version |

Fritz Henglein

DIKU

University of Copenhagen
Universitetsparken 1
DK-2100 Copenhagen

Denmark
henglein@diku.dk

Konstantin L�aufer

CIMS

New York University
251 Mercer Street

New York, NY 10012
USA

laufer@cs.nyu.edu

Abstract

We describe program structuring mechanisms for integrating algebraic, functional and object-
oriented programming in a single framework. Our language is a statically typed higher-order
language with speci�cations, structures, types, and values, and with universal and existential
abstraction over structures, types, and values.

We show that existential types over structures generalize both the necessarily homogeneous
type classes of Haskell and the necessarily heterogeneous object classes of object-oriented pro-
gramming languages such as C++ or Ei�el. Following recent work on ML, we provide separate
linguistic mechanisms for reusing speci�cations and structures. Subtyping is provided in the
form of explicit type conversions.

The language mechanisms are introduced by examples to emphasize their pragmatic aspects.
We compare them with the mechanisms of XML+, Haskell and Ei�el and give a type-theoretic
perspective. These mechanisms have been developed within a larger, ongoing prototyping lan-
guage design project.

1 Introduction

We describe program structuring mechanisms for a high-level language. Our main aim is to sup-
port and integrate algebraic, functional, and object-oriented programming in a coherent language
framework. The language concepts described in this paper have been developed within an ongoing
prototyping language design project [D+91] at New York University.

Our linguistic mechanisms can be seen as a combination of Ada (generic) packages [Uni83],
ML polymorphism, signatures and structures [MTH90], Ei�el object classes [Mey88], Haskell type
classes [HW90], and (partially) abstract types [MP88]. Our design is most closely related to the
recently proposed extension of Standard ML with subtyping and inheritance [MMM91].

We distinguish between three levels of \entities" in our language: speci�cations at the highest
level, types and structures in the middle, and values at the bottom.1 Speci�cations consist of
interface and constraint speci�cations. Speci�cations are collections of structures, which consist of

�Supported in part by the Defense Advanced Research Projects Agency/Information Systems Technology O�ce
under the O�ce of Naval Research contract N00014-90-J-1110

1Actually there is an even higher level, modules, that contain bindings for entities of all lower levels.

1

Henglein/L�aufer: Programming with Structures, Functions, and Objects 2

zero, one, or more types and operations on those types. A type, in turn, denotes a set of values.
Types, in some sense, pre-exist values: Every value has a type and comes into existence if and
when its type is de�ned, typically as part of a structure de�nition. This may be at language
design time (for built-in types) or at program design time (for user-de�ned types). A speci�cation
corresponds to its use in algebraic speci�cation [EM85]; in object-oriented terms, it can be roughly
equated to the (public) interface of a class along with its invariants and assertions (see, e.g., Ei�el
[Mey88]). In algebraic terms a structure is a valid model of a speci�cation, and the types in a
structure correspond to the carrier sets of such a model; in object-oriented terms the types in
a structure represent the data part of a class implementation, and the operations stand for the
methods. Detailed comparisons with other languages are given in Section 2.

We distinguish between the explicit language and the implicit language. Static and dynamic
semantics are speci�ed only for the explicit language (cf. [MH88]). The programmer may, however,
write in an abbreviated style relying on the programming environment to �ll in missing information,
interacting with it, if necessary. Thus the task of completing an implicit program can be seen
as a purely combinatorial task that does not have to be supported in a uniform fashion in all
programming environments since it is outside the language de�nition proper. Several pieces of
information may be inferred by a programming environment:

� \classical" implicit type information, which models universal polymorphism;,

� applications of conversion functions, which models subtyping (cf., [BCGS89]);

� structure resolving, which models static and dynamic overload resolution.

Whereas the type-theoretic ideas in our approach have appeared in various forms before, their
combination and application to object-oriented programming appear to be new.

Instead of implicit subtyping we may de�ne explicit conversion functions between types; for
example, we may de�ne a conversion from integers to reals and vice versa, or a conversion from
cartesian colored points to cartesian points. This allows subtyping even for types de�ned as part of
structures that do not satisfy the F-bounded rule of [CCH+89], which has been criticized by Meyer
as too restrictive [Mey89] and has been adopted in an even more restrictive fashion in [MMM91].

As pointed out before, a class in the object-oriented sense is modeled by a speci�cation for
a single type and, by extension, all structures that satisfy it, either by declaration or implicitly.
The type of a \generic" object of such a class is represented by a generic type type some S :
SPEC with S:t where S:t denotes the type in structure S. An element of this type has two
components, a structure S that satis�es speci�cation SPEC and a value of type S:t. This is an
important di�erence from the approach taken in XML+ [MMM91]: there an object has also two
components, a type component and a value component. The value component consists of all data
and all their methods. So for two XML+ objects we cannot be sure whether their methods or
their data representations are identical. In particular, binary methods that operate on objects with
identical representation type are problematic in that approach.

Dynamic binding can be achieved by using the structure component of a generic object and
selecting from it the corresponding operation and applying it to the value part of an object. For
example, x:f(w) in a language such as Ei�el is translated into

open x as (S; v) in S:f(v; w)

or in the implicit notation

x:f(x:val; w)

Henglein/L�aufer: Programming with Structures, Functions, and Objects 3

where x is a generic object consisting of a structure S and a value v. In the implicit language we
could have written f(x;w) with the idea that the conversion val and the structure modi�er x:struct
can be inferred. Inferring structure modi�ers of this sort is generally dynamic overload resolution;
if the structure modi�er is a (compile time) constant structure then it is essentially static overload

resolution.
Speci�cations and structures are separate, as in XML+. This permits speci�cations with no

structures or more than one structure, obviating the need for deferred classes and arti�cial sub-
classes. Also, speci�cations and structures can be independently reused | \inherited" in object-
oriented lingo. This permits an independent development of speci�cation enhancement and imple-
mentation specialization (cf., [Sny87]).

Functional abstraction over structures of a speci�cation makes it possible to treat members of
an object class as �rst-class functions. This is possible because class members in our language do
not have implicit arguments and because the range of applicability can be precisely described by a
speci�cation. For example, the method \translate" of object class Point has type

translate[P : Point](p : P:t; x; y : real) : P:t

The paper is organized as follows: Section 2 gives an overview of problems occurring in existing
object-oriented languages, the functional language Haskell, and XML+. Section 3 introduces the
key features of our language, called G in the remaining text. Section 4 describes the type-theoretic
foundations of G along the lines of XML [MH88] and XML+ [MMM91]. We conclude with a
summary of the contributions made and an outlook on further research. Appendix A contains a
collection of program examples in G.

2 Some Problems of Other Approaches

2.1 Object-oriented Languages

Most strongly-typed object-oriented languages [Mey88, Str86] identify inheritance with subtyping,
where the subtyping is based on extensible record types partially ordered with respect to a sub-
typing relation. This view appears too restrictive when it comes to modeling certain algebraic
structures. Common properties of classes are typically factored out in a common superclass, so
that heterogeneous structures can be constructed. To illustrate this, let us consider the following
example. We de�ne a class of partially ordered objects with the following signature:

class PartialOrder is

less: PartialOrder -> Bool

Now we re�ne PartialOrder to a class Int with an addition operation, as in

class Int :: PartialOrder is

less: Int -> Bool

However, the de�nition of method less in class Int violates the contravariance rule for function
subtyping. Hence it is not possible to de�ne Int as a subtype of PartialOrder. This example shows
how the requirement that inherited classes be subtypes of their superclasses guarantees type safety
but inhibits
exibility.

Trading o� in the other direction, Ei�el abandons the contravariance rule in its type system
and gives up static type safety for the sake of greater
exibility. Therefore we can actually create
a class PartialOrder of partially ordered objects and several subclasses of PartialOrder, e. g. Int
and String. Indeed, the Ei�el model allows us to write the following code:

Henglein/L�aufer: Programming with Structures, Functions, and Objects 4

bool compare(PartialOrder x, y)

return x.less(y);

n = Int(3);

s = String("three");

n.compare(s)

which would lead to a runtime type error.
Another weakness of object-oriented languages is the identi�cation of speci�cation and imple-

mentation in a single construct. (An exception is the language Emerald [BHJL86], which separates
speci�cation and implementation, but lacks a reuse mechanism.) While the speci�cation and the
implementation of a class may be syntactically separate in order to support modular coding, it is
not possible to identify a single speci�cation with multiple implementations. If we tried modeling
the speci�cation as a common superclass and the implementations as subclasses, we would run into
two problems. The �rst one is the contravariance problem mentioned above. The second problem
has to do with the interoperability of objects of the same speci�cation, but di�erent implementation.
As an example, consider the problem of providing a hash table and a linked list implementation of
a set. The problem appears in coding binary operations such as \union" so that they work on a
pair of hash tables or a pair of linked list representations, but not necessarily on mixed pairs. In
an object-oriented language union will always have to work on mixed pairs as well.

Since object-oriented languages do not logically separate speci�cation and implementation, they
do not provide separate inheritance mechanisms for the two. However, we observe that speci�cation
and implementation inheritance (reuse) often work most naturally in opposite ways. Consider e.
g. decks and stacks as seen in Section 3. It is natural to specify a deck as an extension of the
speci�cation of a stack, since a deck provides at least all the operations that are part of a stack.
On the other hand, a stack implementation can easily be obtained from a deck implementation by
hiding the operations that are not needed. However, we lose this abstraction if we implement a
deck in terms of a stack, because the deck implementation would have to know the representation
of the stack to provide the additional operations [Sny87].

2.2 Haskell Type Classes

Haskell [HW90] provides an overloading mechanism [WB89] which is di�erent from the subtyping
found in traditional object-oriented languages and solves the problem described above. Instead of
capturing common properties of several classes by deriving them from a common superclass, in
Haskell such classes are explicitly declared to be instances of the same type class. Unlike a class in
object-oriented languages, a type class is not a type itself. Instead, it speci�es certain properties
required of its instance types.

In Haskell, we could express the orderedness of type Int by de�ning PartialOrder as a type
class, and declaring Int and possibly other types as instances of PartialOrder. We are allowed to
construct hierarchies of type classes. We may de�ne e. g. a type class Num with numerical operations
as a subclass of PartialOrder. Int could then be made an instance of Num, along with other types
such as Float.

Nevertheless, the Haskell model has several major shortcomings. First, Haskell does not provide
a mechanism for inheritance at the implementation level. Each instance of a type class has to be
implemented without reusing other implementations. Second, Haskell's type classes cannot be
parametrized nor used as parameters of type constructors. For example, it is not possible to de�ne
a list over the type class Num whose members could be of any type declared as an instance of Num.
Neither is it possible to de�ne a type class Set parametrized by the element type. See [Ode90, LO91]
for a detailed treatment.

Henglein/L�aufer: Programming with Structures, Functions, and Objects 5

2.3 XML+

Various disadvantages of existing object-oriented languages have been recognized and described in
[Mit90b, MMM91]. XML+ is an extension of the Standard ML module system and improves over
both the object-oriented and the Haskell style in a number of respects.

XML+ separates speci�cation and implementation, using an extension of ML signatures for
speci�cations, and an extension of ML structures for implementations, combined with separate in-
heritance mechanisms. Separate mechanisms for speci�cation and structure subtyping are provided.
F-bounded polymorphism [CHC90] is used to allow polymorphism over families of structurally sim-
ilar types of objects that do not necessarily have a subtyping relationship. Furthermore, XML+
structures support traditional abstract data types, i. e. pairs consisting of a representation type
and a set of operations on that type, which are not present in existing object-oriented languages.
XML+ introduces internal interfaces which are used by multiple implementations to interact with
one another.

We have found some shortcomings in the XML+ support for object-oriented programming,
which we will illustrate below. First, we �nd it important to be able to specify that two distinct
objects have identical representation type and methods. In existing object-oriented languages such
as C++ it is normally the case that two instances of the same class di�er semantically only in their
state. XML+, however, lacks a mechanism to guarantee this, as illustrated by an example:

specification OBJ =

spec

val get: unit -> int;

val put: int -> unit

end

structure Obj1: OBJ =

struct

val i: ref int = ref 0;

fun get () = !i;

fun put k = i := k

end

structure Obj2: OBJ =

struct

val i: ref int = ref 2;

fun get () = 2 * !i;

fun put k = i := k + 3

end

Given speci�cation OBJ, we can declare objects that are instances of OBJ and therefore satisfy the
signature requirements. However, we are free to implement the components of the instances in
di�erent ways as long as the signature is correct. There is no direct mechanism to construct several
instances of the same implementation; it can be approximated using code reuse at structure level.

G provides speci�cations, structures, and objects. While speci�cations contain signature infor-
mation, structures implement representation and operations of a class or an ADT. By creating
several instances of the same structure, we are sure that they are identical and only di�er in their
state.

The second shortcoming stems from the inheritance mechanism for structures and appears in a
number of object-oriented languages. Inheritance in XML+ can be described as a textual copying
combined with a renaming and visibility control mechanism. Consider the following example:

structure Amount =

Henglein/L�aufer: Programming with Structures, Functions, and Objects 6

struct

type t = int * int;

val v: t = (12, 95)

end

structure UseAmount =

struct

copy Amount;

fun dollars () = #1 v;

fun pennies () = #2 v

end

This textual copy mechanism is not safe; it may lead to problems known from other languages such
as Smalltalk [GR83]. The problem generally appears in the part of the code that is copying from
the other structure. If Amount is rede�ned with the representation given below, a type error occurs
in UseAmount.

structure Amount =

struct

type t = int;

val v = 1295

end

At speci�cation level, besides textual copying, XML+ provides extension and restriction of
speci�cations, which result in subtypes and supertypes of the original speci�cation, respectively.
Unfortunately, it is not clear how a recursive speci�cation is extended. By a recursive speci�cation
we mean one whose name appears in the signature of one of its components. Suppose we extend
the speci�cation

specification StackClass[type t] =

spec

fun push: t -> StackClass[t]

to another speci�cation

specification DeckClass[type t] =

extend StackClass[t] with

fun append: t -> DeckClass[t]

Does the component push of DeckClass have type t -> StackClass[t] or t -> DeckClass[t]? Clearly,
the latter would be more desirable as we might want to push an element onto our deck �rst, and then
append another one; hence we want push to return a deck. Traditional object-oriented languages
provide constructs such as mytype or like current, while G solves this problem by identifying the
object type with the representation type, and not with the type of the whole structure.

Although XML+ contributes to the solution of various problems present in the object-oriented
paradigm, it does not completely resolve certain issues regarding code reuse and class speci�cation.

3 Speci�cations, Types, and Values

In this section, we will present the data abstraction mechanisms of our language G. Let us give an
overview of the concepts and terms we use, before we address the technical issues.

Henglein/L�aufer: Programming with Structures, Functions, and Objects 7

3.1 Basic Concepts and Terminology

type: A type denotes a collection of (�rst-class) values.2 A type is not useful by itself; it is normally
de�ned as a component of a structure, which provides operations involving that type. Types
are either primitive, such as int, bool, string, or constructed from primitive types, such as
function types, ML-style datatypes, etc. In G, monomorphic and polymorphic functions are
considered �rst-class.

value: A value is an element of a type. Values are exactly the �rst-class entities in G, i. e. they
can be returned as the result of a conditional expression, passed as a function parameter, or
stored in a variable. Examples are:

3, false, fn[t :: Type] (x : t) => x

structure: Structures in G are viewed the same way as in ML. A structure is an encapsulation
unit that consists of zero, one, or more types, and zero, one, or more values. Structures are
elements speci�cations; although we could say that speci�cations are types of structures, we
prefer to use the term \type" exclusively for types of �rst-class values. Structures containing
one or more types are not �rst-class entities, since that would inhibit static typing. They are
at the same level as types; in fact, a type may be identi�ed with a structure containing only
that (representation) type, but no operations. All prede�ned types are actually representation
types of structures that de�ne the operations on them.

functor: A functor is a structure template parametrized by (compile-time) values, types, or struc-
tures. Functors are described by parametrized speci�cations.

speci�cation: A speci�cation de�nes the interface of a structure, i. e. its visible components.3 A
structure is said to be an element of, or implement a speci�cation if it provides de�nitions for
all the entities required by the speci�cation. Speci�cations can be parametrized by values,
types, or structures; in that case, they are speci�cations of functors. So far, our speci�cations
correspond to ML signatures or Ada package speci�cations. Furthermore, speci�cations can
be parametrized with respect to other signatures.

module: A module is a compilation or library unit that contains bindings for entities of all lower
levels, i. e. speci�cations, structures, types, and values.

hidden type and generic object: In many situations, we want to have objects that are instances
of some implementation of a speci�cation, but we do not care which one. Such generic

objects consist of a (hidden) structure component and the object value, whose type is the
representation type of the structure component.4 They provide dynamic dispatching on
subclasses in the sense that the structure component is hidden and may be locally opened in
order to access the methods implemented on that particular representation type. The value
component can be accessed only within an open statement; this restriction allows us to treat
hidden types as �rst-class types.

reuse: Code reuse, or inheritance, can occur both at structure level and speci�cation level. Reuse
at structure level is not yet well-understood (see the discussion in [Mit90b]), and is currently

2Hence in type-theoretic terms, types in G are \small" types. See Section 4 for a brief discussion of polymorphic
functions.

3Optionally a speci�cation can also contain constraints, which are, however, of no further relevance here.
4Such hidden types are called existential types in type-theoretic terminology, see [MP88]

Henglein/L�aufer: Programming with Structures, Functions, and Objects 8

Figure 1: Stack implemented as a list

struct liststack[e :: Type] :: Stack[e] = List[e] with

new = nil

push(l, e) = e :: l

pop = tl

top = hd

isempty(l) = (l = nil)

handled by textual copying, although we are not satis�ed with this method. At speci�cation
level, new speci�cations can be derived from previous ones by copying, adding, or omitting
parts of the speci�cation.

subtyping and conformity: At type level, G provides no implicit subtyping; instead, explicit
conversion functions may be used. This gives us higher
exibility for forms of subtyping that
do not satisfy the restrictive contravariance rule for record subtyping [CHC90]. On the other
hand, we have implicit conformity between speci�cations; for example, when a parameter is
speci�ed by a required interface, any structure that satis�es that interface may be passed.

3.2 Speci�cation and Implementation

Let us now demonstrate how types can be speci�ed and implemented. A speci�cation states the
abstract properties of a type, i. e. how a type will be used, but does not specify any concrete
implementation details (except possibly for representation-independent bodies of operations, as we
will see shortly). Consider the following example of a parametrized stack:

spec Stack[elem :: Type] =

stack :: Type with

new: stack

push: stack * elem -> stack

pop: stack -> stack

top: stack -> elem

isempty: stack -> bool

-- constraints

Note that Type itself is a speci�cation. Indeed, it is the most general speci�cation in the sense that
it does not specify any operations on its instance types.

Structures are instances of speci�cations and describe how abstract objects are implemented.
The structures in Figures 1 and 2 give two alternative implementations of the speci�cation Stack.
They are functional implementations in the sense that they do not carry a state. A more \object-
oriented," imperative implementation could be given as in Figure 3

Let us now demonstrate how speci�cations can be reused (inherited). From an abstract point of
view, a deck is a stack with some more operations, namely, the queue operations. When specifying
a deck, it is natural to use the speci�cation of Stack and tack on the additional operations.

spec Deck[elem:: Type] =

Stack[elem] with stack as deck and

append: elem * deck -> deck

delete: deck -> deck

last: deck -> elem

Henglein/L�aufer: Programming with Structures, Functions, and Objects 9

Figure 2: Stack implemented as an array

struct arraystack[e] = { a: Array[0..MAXSIZE] of e, i: 0..MAXSIZE } with

new = { a = new(Array[0..MAXSIZE]), i = 0 }

push(s, e) = s{a := s.a[i+1 := e], i := s.i + 1}

pop(s, e) = s{i := s.i - 1}

top(s) = s.a[s.i]

isempty(s) = (s.i = 0)

Figure 3: An imperative stack implementation

struct refliststack[e] :: Stack[e] = ref List[e] with

new = ref nil

push(s, e) = (s := x :: !s; s)

pop(s) = (s := tl(!s); s)

top(s) = hd(!s)

isempty(s) = (!s = nil)

isfull: deck -> bool

Note how the virtual representation stack is renamed to deck and used in the signature of the
additional operations. The representation corresponds to \mytype" in typical object-oriented lan-
guages.

Having just seen reuse of speci�cations, let us introduce reuse of implementations, for which G

provides a separate, quite
exible mechanism. Aiming at implementing decks, we start by extending
the list implementation of a stack, and then giving an array-based implementation of a deck not
inherited from any other structure (Figures 4 and 5).

Having written such an implementation of a deck, one might be curious whether it can be made
into a stack implementation simply by getting rid of part of the operations provided. By giving
arraydeck the signature Stack, as in Figure 6, we hide the operations in arraydeck that are not part
of Stack. As elaborated in Section 2, existing object-oriented languages do not typically provide
this
exibility.

Figure 4: Deck implemented as a list

struct listdeck[elem] :: Deck[elem] = liststack[elem] with

(liststack[elem]): listdeck[elem] -> liststack[elem]

-- automatically inferred type conversion

append(e, (c :: q)) = c :: append(e, q)

append(e, nil) = [nil]

delete(c :: nil) = nil

delete(c :: l) = c :: delete(l)

last(c :: nil) = c

last(c :: l) = last(l)

isfull(l) = false

Henglein/L�aufer: Programming with Structures, Functions, and Objects 10

Figure 5: Deck implemented as an array

struct arraydeck[elem] :: Deck[elem] = { a: Array[0..MAXSIZE] of elem, i, j: 0..MAXSIZE, full: bool }

with

new = { a = new(Array[0..MAXSIZE]), i = MAXNUM, j = 0, full = false }

push(q, e) = if isfull(q) then

raise full

else

q{a := q.a[j := e], j := next(q.j), full = (prev(q.j) = q.i)}

pop(q) = if isempty(q) then raise empty else q{j := prev(q.j)}

top(q) = if isempty(q) then raise empty else q.a[prev(q.j)]

append(e, q) = if isfull(q) then

raise full

else

q{a := q.a[i := e], i := prev(q.i), full = (prev(q.j) = q.i)}

delete(q) = if isempty(q) then raise empty else q{i := next(q.i)}

last(q) = if isempty(q) then raise empty else q.a[next(q.i)]

isempty(q) = not isfull(q) and (prev(q.j) = q.i)

isfull(q) = q.full

next(i: int) = if i = MAXSIZE then 0 else i+1 -- auxiliary definitions

prev(i: int) = if i = 0 then MAX

Figure 6: Stack implemented reusing deck implementation

struct arraystack2[elem] :: Stack[elem] = arraydeck[elem]

Henglein/L�aufer: Programming with Structures, Functions, and Objects 11

Figure 7: Speci�cation of a point

spec Point = t :: Type with

new: real * real -> t

x: t -> real

y: t -> real

r(p: t): real = sqrt(x(p)^2 + y(p)^2)

theta(p: t): real = arctan(y(p)/x(p))

eq(p: t, q: t): bool = x(p) = x(q) and y(p) = y(q)

translate(p: t, u: real, v: real): t = new(x(p)+u, y(p)+v)

scale(p: t, s: real): t = new(x(p)*s, y(p)*s)

sqdistance(p: t, q: t): real = (x(p) - x(q))^2 + (y(p) - y(q))^2

3.3 Hidden Types and Dynamic Dispatching

Suppose we are given the speci�cation Point in Figure 7 along with some implementations (which
we are not showing). A generic point would then have the type

type AnyPoint = some P :: Point with P.t

Generic types are useful for dynamically dispatching an operation over a heterogeneous aggregate
of objects. Given a value p of type AnyPoint, we can dynamically select a method from its structure
component:

p := hide CartPoint new(3.0, 4.5)

open p as (S,v) in

hide CartPoint S.scale(v, 2.0)

The result of the scale operation is a new cartesian point packed together with the structure
CartPoint. Note that the example could be written using the implicit notation

p.scale(p.val, 2.0)

Another example of dynamic dispatching, which also involves multiple inheritance, is given in
Appendix A.

4 Type-theoretic Aspects

The G type system is based on an explicitly typed, predicative lambda calculus and can be consid-
ered as an extension of the type systems described in [Mac86, MH88, MMM91]. In this section, we
will brie
y review the concepts underlying those type systems and then outline the G type system.

XML is a language introduced in [MH88] in order to explain more precisely the type system
of Standard ML, including its module facility. The type system of XML provides two universes
of types, U1 and U2, which are informally called \small" and \large" types, respectively. This
separation re
ects the phase distinction between the static evaluation of modules and the dynamic
evaluation of values in Standard ML. The universe of all values, U0, contains all entities whose
types are members of U1. XML may be de�ned relative to an arbitrary collection of base types, e.
g., integers and booleans, and user-de�ned algebraic free types. Its small types include any type
expression constructed using only base types, monomorphic type variables, and the function space
constructor !.

Henglein/L�aufer: Programming with Structures, Functions, and Objects 12

The large type universe of XML corresponds to Standard ML's polymorphic types and module
facility. U2 contains U1 itself, polymorphic functions, and types constructed from other members of
U2 using general sum and product operations. We will now review these operations as introduced
in [Mac86].

Let A be a set, and B a family of sets indexed by A, meaning that B(a) is again a set for each
a 2 A. Then the general product of A and B, written �x : A:B(x) is the set of functions f from A

to the union [x2AB(x) such that for each a 2 A, we have f(a) 2 B(a), i. e.,

�x : A:B(x) =

ff 2 A! [x2AB(x) j 8a 2 A:f(a) 2 B(a)g

Note that in the degenerate case in which B is constant, the general product reduces to the function
space A! B.

The general sum, written �x : A:B(x), for a set A and a family of sets B indexed by A, is the
set of pairs <a; b> such that a 2 A and b 2 B(a), i. e.,

�x : A:B(x) =

f<a; b>2 A� [x2AB(x) j b 2 B(a)g

In the degenerate case, the general sum reduces to the cartesian product A � B. We may apply
projection functions j:j (witness) and val to members of general sum types which return the �rst
and second component of the member, respectively.

Viewing types as sets, XML incorporates general sum and product types into U2 by requiring
that the index type A and the types contained in the family B be members of U2. The following
are examples of general sum and product types and members of such types:

<int; 3>: �t : U1:t

nil : �t : U1:list(t)

As seen in [Mac86, MH88], the signatures of Standard ML may be viewed as syntactic sugar
for general sum types, and ML structures and functors as a notation for members of general sum
and product types, respectively. Although functor signatures are not provided in ML, they could
be described by general product types.

The language XML+ is presented in [MMM91] and can be seen as a generalization of XML incor-
porating several new features. It generalizes signatures by providing not only structure signatures
in form of general sums, but also functor signatures in form of general product types. In addition,
XML+ features parametrized signatures, which have types of the form U2 ! U2 ! : : : ! U2,
technically leaving the boundaries of U2. Another feature included in XML+ is an impredicative
treatment of existential types and a related implicit coercion from U2 to U1. We will give a brief
overview of existential types and their use in XML+.

Existential types are introduced in [MP88, CW85] and model the programming language concept
of type abstraction. Using the notation of [Mac86], an existential type is expressed as 9t : U1:B(t),
where B is a type expression possibly containing free occurrences of t. Values of such types are
created by expressions of the form hide9t:U1:B(t)�M , where � is a U1 type and M is an expres-
sion of type B(t). The only expression available on members of existential types has the form
open M as x[t] in N . It has type �, assuming M : 9t : U1:B(t) and x : B(t)) N : �, with the
restriction that t does not leave the scope of N , i. e., appear free in � or the type of any variable
appearing free in N . Locally within N , t refers to the type component, and x to the value com-
ponent. Although existential types, similarly to general sum types, have a type component which

Henglein/L�aufer: Programming with Structures, Functions, and Objects 13

is a member of U1, they can be considered as members of U1. This is possible because the type
component is hidden and may be accessed only locally as an opaque type newly generated with
each open operation.

XML+ provides signatures as general sum types; however, the structures described by those
signatures may be treated as members of existential types so that they have small types. This

exibility is achieved by recognizing that there is a canonical coercion function

hide : �t : U1:B(t)! 9t : U1:B(t)

which simply hides the identity of the type component of a structure and is re
ected in the typing
rules.

G di�ers from XML in several ways. While maintaining a hierarchy of two type universes,
it combines general sum types in U2 with a modi�ed notion of impredicative polymorphism and
bounded existential types. Within the universe U1, G identi�es structures with the underlying
representation types. We will now elaborate on these characteristics.

Polymorphism in G appears at two levels. Since it is desirable to treat polymorphic functions
as �rst-class values, we consider polymorphic types such as �t : U1:B(t), or commonly written
8t : U1:B(t), as types in U1. We can now write �rst-class functions parametrized by polymorphic
functions, e. g.,

g = �f : (8t : U1:t! t):(f int 3; f bool false)

This option is described in [MH88], and the question whether the extension of XML with this sort
of impredicative polymorphism is strongly normalizing still appears to be open. However, it is
believed to be strongly normalizing [Mit90a], since the code of polymorphic functions is completely
oblivious to the type parameter. Analogously, we view functors of the form 8s : U2:B(s), where
B(s) : U2, as members of U2, thereby allowing us to parametrize functors by other functors.

In addition to existential types such as 9t : U1:B(t), G provides signature-bounded existential
types of the form 9t : C:B(jtj) as U1 types, where C : �t : U1:F (t) and jtj denotes the �rst (witness)
component of t (see [CW85, Mac86]). Such types are used to model partial abstraction, meaning
that the only known property of the hidden structure is its membership in a signature C. They are
useful when modeling object-oriented programming, where we have objects with a known interface
but a hidden representation. As an example, consider

C = �t : U1:t! bool

S = <int; �x : int:x � 0>: C

s = hide9t:C:jtjS 3

Now we can use the square operation when we locally open s as in

open s as x[t] in (val(t))(x) : bool

In contrast to XML+, which models classes as general sum types and objects as their members,
G has a 3-level hierarchy viewing objects as values, object types (classes) as U1 types, and signatures
(class interfaces) as U2 types. At the level of U1, we identify structures that group a small type
with operations on that type with the witness type itself, which we view as a mere set of values. As
seen in the previous example, C is a class interface specifying a square operation, S is a structure
with interface C, and 3 is an object of class S, i. e., a value of type jSj.

G has a notion of signature conformity similar to XML's.

Henglein/L�aufer: Programming with Structures, Functions, and Objects 14

5 Conclusion

We have developed a language framework that integrates algebraic, functional, and object-oriented
programming in a uniform way. We have shown that abstraction over structures plays a critical
role in o�ering
exible manipulation of both homogeneous and heterogeneous data. This combines
the advantages of algebraic and object-oriented programming.

Several important open problems remain. Type reuse and type derivation need to be worked
out carefully to overcome the non-robust nature of literally copying structures. Furthermore, the
generalized type inference problem of completing programs in our implicit language need to be
addressed where types, structure modi�ers and conversion functions may be elided.

Acknowledgments

We would like to thank Martin Odersky for helpful suggestions and for sharing his insights on
locally polymorphic types with us. We would further like to thank all members of the Gri�n group
for extensive and lively discussions providing valuable stimulation and feedback; in particular,
Malcolm Harrison for advocating a style of object-oriented programming based on algebraic data
types rather than on pure objects; Chih-Hung Hsieh for proposing the use of typesets as a means
of describing collections of types; Edmond Schonberg and Dennis Shasha for detailed comments
on the paper. The second author wishes to thank Malcolm further for his guidance through the
intricacies of making refreshing tea.

A A Collection of Examples in G

This section contains a number of examples that we considered during the design of our language.

A.1 Points, Circles, and Rectangles: Hidden Types and Dynamic Dispatching

We will start with another example of dynamic dispatching, which also involves multiple inheri-
tance. It is based on the example in Section 3, which gives a speci�cation of Point. We add two
speci�cations, one for graphical objects and one for colored objects.

type Color = { red, green, blue }

spec ColorObj = colorobj :: Type with

color: colorobj -> Color

spec GraphObj = graphobj :: Type with

draw: graphobj -> void

scale: graphobj * real -> graphobj

Using multiple inheritance, we obtain a new speci�cation for graphical objects that also have a
color:

spec ColGraphObj =

ColorObj with colorobj as colgraphobj

and

GraphObj with graphobj as colgraphobj

Let us de�ne some geometric objects we can draw. Note how they use the type AnyPoint we de�ned
above, since we do not care how the points constituting the rectangle are represented.

Henglein/L�aufer: Programming with Structures, Functions, and Objects 15

Figure 8: Implementations of circle and rectangle

struct gencircle :: CircleObj = { center: AnyPoint, radius: real } with

new(p, r) = { center = p, radius = r }

center(c) = c.center

radius(c) = c.radius

scale(c, s) = c{ radius = c.radius * s }

draw(c) = let <s, v> = c.center

in drawcircle(s.x(v), s.y(v), p.radius)

struct genrectangle :: RectangleObj = { lowerleft: AnyPoint, upperright: AnyPoint } with

new(p, p') = { lowerleft = p, upperright = p' }

lowerleft(r) = r.lowerleft

upperright(r) = r.upperright

scale(r, s) = let <t, v> = r.upperright

in r{ r.upperright = t.scale(v, s) }

draw(r) = let <tl, vl> = r.lowerleft and

<tr, vr> = r.upperright

in drawrectangle(tl.x(vl), tl.y(vl), tr.x(vr), tr.y(vr))

spec CircleObj =

GraphObj with graphobj as circle and

new: AnyPoint * real -> circle

center: circle -> AnyPoint

radius: circle -> real

scale: circle * real -> circle

spec RectangleObj =

GraphObj with graphobj as rectangle and

new:

AnyPoint * AnyPoint -> rectangle

lowerleft: rectangle -> AnyPoint

upperright: rectangle -> AnyPoint

The implementations for CircleObj and RectangleObj are given in Figure 8.
Finally we come to the interesting part. We de�ne a type for any graphical object and a

function which locally dispatches such an object to its proper drawing function. Remember that
such objects are actually pairs of a hidden type component, which gets bound to s, and a value of
the representation type contained in the hidden type component, here bound to v.

type AnyGraphObj = some G: GraphObj with G.t

draw(g: AnyGraphObj) = g.draw(g.val)

Now we can de�ne a heterogeneous list type of graphical objects and draw such a list.

struct GraphList = List[AnyGraphObj] with

draw: List[AnyGraphObj] -> void

draw(nil) = ();

draw(<s,v>::l) = s.draw(v); draw(l)

Henglein/L�aufer: Programming with Structures, Functions, and Objects 16

Hidden types actually o�er more than what we just showed. The following example shows how
they can be used to group two points of the same type, where we only care that the type is the
same, but not which particular implementation of the speci�cation Point.

type APPair =

some P :: Point with P.t * P.t

eq(pp: APPair): bool =

pp.eq(pp.val.1, pp.val.2)

Using such a pair type, we can de�ne a safe equality function that takes a pair of points and
dispatches them to the equality function implemented in the common point structure P . Generally,
this makes binary operations on types dynamically dispatchable without endangering static type
safety or requiring multiple argument dispatching.

A.2 Based Set: Objects and Abstraction

Based sets play an important role in the implementation of the language SETL [SDDS86]. At
speci�cation level, a based set is parametrized by the element type and provides a set type and a
\translated" element type, both of which are abstract. Various set operations, overloaded for use
with based or unbased sets, are provided.

spec basedSet[elem :: Eq] =

type set

type belem

in: elem * set -> bool

with: set * elem -> bool

less: set * elem -> bool

in: belem * set -> bool

with: set * belem -> bool

less: set * belem -> bool

lookup: elem -> belem

union: set * set -> set

-- etc.

As seen in Figure 9, a simple, ine�cient implementation of a based set can be given by representing
the set as a bitvector and the translated elements as indices into the bitvector. In addition, we need
a hidden variable representing the translation from indices to actual elements, implemented as a
sequence5 We give implementations of the di�erent set operations. Note that the hidden variable
base would be called a class variable in object-oriented terminology. Given this implementation, we
can create variables of type set; the base is updated as operations on the variables are performed.

A.3 A Package for Vectors and Matrices: Multiple Implementations and Hid-

den Types

This example illustrates the use of a structure implementing several related types. We show a
speci�cation requiring two types, vec and mat, and operations involving these types.

5The e�ciency could be improved by using an associative data structure, e. g., a hash table.

Henglein/L�aufer: Programming with Structures, Functions, and Objects 17

Figure 9: Implementation of based set

struct basedSet[elem :: Eq] =

type set = Seq[Bool]

type belem = Nat

type bset = Seq[elem]

var base : bset

in(b: belem, s: set): bool = if b > # base then false else s[belem]

with(s: set, b: belem): set = s[b := true]

less(s: set, b: belem): set = s[b := false]

lookup(e: elem): belem = lookup(e, base) -- only this lookup is exported

lookup(e: elem, bs: bset): belem = -- this one is hidden

if # s = 0 then 0 else 1 + lookup(e, s[2..]) -- this is inefficient!

in(e: elem, s: set): bool = s[lookup(e)] handle subscript_error => false

with(s: set, e: elem) = let l = lookup(e)

in

if l = 0 then

base := base ++ [e]

s ++ [true]

else

s[# l := true] -- assuming that this maintains the

-- sequence contiguous by inserting

-- appropriate false values

less(s: set, e: elem) = s[lookup(e) := false] handle subscript_error => s

-- union etc. implemented bitwise, base need not be updated

Henglein/L�aufer: Programming with Structures, Functions, and Objects 18

spec VecMat[elem :: Num] =

vec :: Type

mat :: Type

-- constructors

newvec: int * int -> vec

newmat: int * int * int * int -> mat

-- arithmetic operations

+: vec * vec -> vec

-: vec -> vec

-: vec * vec -> vec

*: vec * vec -> elem

*: mat * vec -> vec

*: vec * mat -> vec

*: mat * mat -> mat

-- indexing operations

[.]: vec * int -> elem

[.]: mat * int -> vec

[,.]: mat * int -> vec

[.,.]: mat * int * int -> elem

-- etc.

Matrices and vectors may be dense or sparse. It is useful to provide implementations which e�-
ciently cover both cases.

struct denseVecMat[elem] :: VecMat[elem] =

type vec = Array[elem]

type mat = Array[Array[elem]]

-- etc.

struct sparseVecMat[elem] :: VecMat[elem] =

type sparseVecElem = elem * int

type sparseMatElem = elem * int * int

type vec = Seq[sparseVecElem]

type mat = Seq[sparseMatElem]

-- etc.

We can now de�ne generic object types for systems and solutions of linear equations. The type
anyLinEq de�nes a tuple containing a vector and a matrix instantiated from the same, arbitrary
implementation. We can code functions independently of the implementation of the objects passed
as parameters; the Gaussian elimination function below works on dense or sparse vectors and
matrices.

type anyLinEq =

some vm :: VecMat with vm.mat * vm.vec

type anyLinSol =

some vm :: VecMat with Seq[vm.vec]

gauss(leq: anyLinEq): anyLinSol =

open leq as (vm,(vec,mat)) in

-- some Gauss elimintation operations

Henglein/L�aufer: Programming with Structures, Functions, and Objects 19

-- using operations defined in VecMat

-- computing seqOfSpanningVecs

hide vm seqOfSpanningVecs

References

[BCGS89] V. Breazu, T. Coquand, C. Gunter, and A. Scedrov. Inheritance and explicit coercion.
In Proc. Logic in Computer Science (LICS), pages 112{129, 1989.

[BHJL86] A. Black, N. Hutchinson, E. Jul, and H. Levy. Object structure in the Emerald sys-
tem. In Proc. ACM Symp. on Object-Oriented Programming: Systems, Languages, and

Applications, pages 78{86, October 1986.

[CCH+89] P. Canning, W. Cook, W. Hill, W. Oltho�, and J. Mitchell. F-bounded polymorphism
for object-oriented programming. In Proc. Functional Programming and Computer Ar-
chitecture, pages 273{280, 1989.

[CHC90] W. Cook, W. Hill, and P. Canning. Inheritance is not subtyping. In Proc. ACM Symp.

on Principles of Programming Languages, pages 125{135, Jan. 1990.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymor-
phism. ACM Computing Surveys, 17(4):471{522, Dec. 1985.

[D+91] R. Dewar et al. Preliminary reference manual for the Gri�n prototyping language.
Presented at the DARPA Prototech Working Group Meeting, May 1991.

[EM85] H. Ehrig and B. Mahr. Algebraic Speci�cation, volume 1/2 of EATCS Monographs on

Theoretical Computer Science. Springer-Verlag, 1985.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, 1983.

[HW90] P. Hudak and P. Wadler. Report on the Programming Language Haskell, April 1990.
(editors).

[LO91] K. L�aufer and M. Odersky. Type classes are signatures of abstract types. In Proc.

Phoenix Esprit Workshop on Declarative Programming, November 1991.

[Mac86] D. MacQueen. Using dependent types to express modular structure. In Proc. 13th ACM

Symp. on Principles of Programming Languages, pages 277{286. ACM, Jan. 1986.

[Mey88] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1988.

[Mey89] B. Meyer. Static typing for Ei�el. posted to comp.lang.ei�el, July 1989.

[MH88] J. Mitchell and R. Harper. The essence of ML. In Proc. Symp. on Principles of Pro-

gramming Languages. ACM, Jan. 1988.

[Mit90a] J. Mitchell. Private communication, Nov. 1990.

[Mit90b] J. Mitchell. Toward a typed foundation for method specialization and inheritance. In
Proc. ACM Symp. on Principles of Programming Languages, pages 109{124, 1990.

Henglein/L�aufer: Programming with Structures, Functions, and Objects 20

[MMM91] J. Mitchell, S. Meldal, and N. Madhav. An extension of Standard ML modules with sub-
typing and inheritance. In Proc. ACM Symp. on Principles of Programming Languages,
Jan. 1991.

[MP88] J. Mitchell and G. Plotkin. Abstract types have existential types. ACM Trans. on

Programming Languages and Systems, 10(3):470{502, 1988.

[MTH90] R. Milner, M. Tofte., and R. Harper. The De�nition of Standard ML. MIT Press, 1990.

[Ode90] M. Odersky. Locally polymorphic types. IBM research note, Nov. 1990.

[SDDS86] J. Schwartz, R. Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets: An

Introduction to SETL. Springer-Verlag, 1986.

[Sny87] A. Snyder. Inheritance and the development of encapsulated software components. In
Research Directions in Ojbect-Oriented Programming, pages 165{188. MIT Press, 1987.

[Str86] B. Stroustrop. The C++ Programming Language. Addison-Wesley, 1986.

[Uni83] United States Department of Defense. Reference Manual for the ADA Programming

Language. Springer-Verlag, 1983.

[WB89] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proc. 16th
Annual ACM Symp. on Principles of Programming Languages, pages 60{76. ACM, Jan.
1989.

