ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2762843
Interaction, Concurrency, and OOP in the Curriculum: a Sophomore Course

Article - November 1998

Source: CiteSeer

CITATION READS
1 36

4 authors, including:
Radha Jagadeesan - Konstantin Laufer
DePaul University Loyola University Chicago
120 PUBLICATIONS 4,983 CITATIONS 68 PUBLICATIONS 631 CITATIONS

SEE PROFILE SEE PROFILE

All content following this page was uploaded by Radha Jagadeesan on 24 June 2014.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/2762843_Interaction_Concurrency_and_OOP_in_the_Curriculum_a_Sophomore_Course?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2762843_Interaction_Concurrency_and_OOP_in_the_Curriculum_a_Sophomore_Course?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Radha-Jagadeesan?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Radha-Jagadeesan?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/DePaul_University?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Radha-Jagadeesan?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Konstantin-Laeufer?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Konstantin-Laeufer?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Loyola-University-Chicago?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Konstantin-Laeufer?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Radha-Jagadeesan?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_10&_esc=publicationCoverPdf

Interaction, Concurrency, and OOP in the Curriculum:

a Sophomore Course*

Christopher Colby

Radha Jagadeesan

Konstantin Laufer

Chandra Sekharan

Department of Math and CS, Loyola University Chicago
6525 N. Sheridan Road, Chicago, IL 60626
{colby,radha,laufer,chandra}@cs.luc.edu

http://www.cs.luc.edu/ ™ {colby,radha,laufer,chandra}

Abstract

We argue that a computer-science curricu-
lum should introduce the principles of con-
current programming in an integrated, co-
herent, and application-independent fashion
early in the major. We have incorporated
current research into our curriculum. We
describe a sophomore-level course on the
fundamentals of concurrent and interactive
programming that is the fruit of this work.
We offered this course to about 60 students
wn Fall 1997 and Spring 1998.

Information regarding the software frame-
works for the programming assignments can
be obtained by contacting the authors.

1 Introduction
What is wrong?

The world is full of concurrent systems.
Consider
e real-time systems
signal-processing systems
telecommunication systems
graphical user interfaces
operating systems
multiprocessors and pipelining

*R. Jagadeesan and C. Colby were supported in
part by NSF CAREER grants.

e distributed algorithms
to name but a few ubiquitous examples.
What all of these systems have in common is
the notion of multiple subsystems that com-
municate with each other or with their en-
vironment.

How do these systems come into being?
Computer scientists always learn the fun-
damentals of sequential computing early in
their education, but rarely ever learn the
fundamentals of concurrent computing. To
cover concurrent systems, the typical under-
graduate curriculum instead offers a series
of application-specific courses, usually at the
junior or senior level. For instance:

1. Operating Systems. For example, every
part of Nachos, a popular educational
operating system, uses threads to man-
age concurrency.

2. (Telecommunication) Networks. Con-
currency is used to describe and ana-
lyze protocols at various levels of a hi-
erarchy, such as the physical level, the
data link level, and so forth.

3. Software Engineering. For instance, in-
teractive graphical user interfaces are



an important class of applications stud-
ied and implemented in such courses.

4. Computer Architecture. The combina-
tion of circuits is arguably the simplest
and most natural example of concur-
rent computation. Furthermore, con-
currency arises as a natural abstraction
in understanding topics such as pipelin-
ing and multiprocessors.

A fixed set of application-specific courses
is bound to be both an incomplete cov-
erage of present technology and an inade-
quate preparation for future technology. In
contrast, the typical courses in sequential
computation programming, data struc-
tures, algorithms, etc.—teach application-
independent problem-solving skills and are
hence far more adaptable.

The problem, as we see it, is that concur-
rency and interaction are not taught at a
conceptual level, but at an application level.
It is not taught as a means, but as an end.

A better approach

We argue that a computer-science curricu-
lum should introduce the principles of con-
current programming in an integrated, co-
herent, and application-independent fashion
early in the major. We believe that this
is now possible, having successfully adapted
our current research to the undergraduate
computer-science curriculum at Loyola Uni-
versity Chicago in a course called Introduc-
tion to Concurrency. Furthermore, we be-
lieve that students should absorb this mate-
rial at an early stage of their education.

A coherent introduction to interactive
and concurrent programming at an early
stage offers the following advantages.

e Programming methodology. Interac-
tive and concurrent computing introduces
students to a powerful programming idiom

and structuring methodology—the concep-
tual decomposition into modules that run
concurrently. Pedagogically, we believe the
right time to introduce students to these
ideas is before the idioms and methodol-
ogy of sequential programming become in-
grained as the instinctive and primary way
of thinking about problem solving, algo-
rithms, and programming.

e Specification, Testing, and Verifica-
tion. Early in their education, undergrad-
uate students should learn about the formal
specification of programs, the generation of
test cases from specifications, and the for-
mal verification of programs as an integral
part of the programming process, whether
concurrent or sequential. From a pedagog-
ical point of view, the subtleties of concur-
rent programs such as time-dependent be-
haviors and nondeterminism form a peda-
gogical setting to emphasize these ideas.

But how?

Most complex concurrent applications com-
bine two ideas:

e Reactivity. Reactive systems are
event-driven systems that interact continu-
ously with their environment at a rate con-
trolled by the environment. Execution in
such systems proceeds as bursts of activity.
In each phase, the environment stimulates
the system with an input, obtains a response
within a bounded amount of time, and may
then be dormant for an arbitrary period of
time before initiating the next burst.

e Asynchrony. In asynchronous sys-
tems, processes are loosely coupled and
communication can take an arbitrary
amount of time.

To understand these systems in a coher-
ent and application-independent manner,
we look to the body of research in concur-
rent programming. There are two mature
and relevant strands of research into the



specification and design of concurrent sys-
tems:

1. process algebras and synchronous pro-
gramming languages

2. temporal logic, testing, and verification

We discuss each of these in turn to suggest
how they can help achieve our pedagogical
goal.

1. Process algebras and synchronous pro-
gramming languages. The key feature of
process algebras (e.g., CCS [6], CSP [4]) and
synchronous programming languages (e.g.,
see [3]) is a notion of abstract behavior,
which in a concurrent system is essentially
the interaction of the system with its envi-
ronment. Communication takes place via
(labeled) events that are abstractions of
names of communication channels.

Programs can be combined freely with
combinators, and one need only be con-
cerned about the desired effects on the re-
sulting behavior. That is, combinators op-
erate on behaviors, and the results of the
combinators are behaviors. For instance:

e The parallel-composition combinator
allows two (interactive) programs to run
concurrently and communicate with each
other. The result is a single (interactive)
program that is indistinguishable from a
simple one (in much the same way that an
object built by object composition has the
same status as a simple object). Thus, one
may use parallel composition freely for the
modular decomposition of designs.

e Preemption combinators allow pro-
grams to be controlled by events. For
example, the watchdog combinator DO P
WATCHING e yields a process that behaves
like P until event e happens, upon which
execution of P is terminated (in the spirit
of “Ctrl C”). Analogous to exception mech-
anisms in traditional programming lan-
guages, the preemption combinators aid

in program modularity; for example, the
watchdog above avoids the pollution of P
with information about the event e. Excep-
tions have first class status; any event can be
an exception and can be used in the place of
e in the watchdog. This allows exceptions to
play an integral role in in the programming
of systems. Nesting preemption operators
establishes priorities on events; for exam-
ple, the event e, has higher priority than the
event e; in the program fragment DO (DO P
WATCHING e;) WATCHING ey. We note that
the programming language does not con-
strain these priorities; rather, the priorities
are determined by the program itself.

2. Temporal logic, testing and verifica-
tion. Temporal logic augments traditional
logic with modal operators that operate on
the time domain (see [5] for a survey). Ex-
tensive research has yielded an ample collec-
tion of examples and specification method-
ologies establishing temporal logic as an
expressive language for the description of
properties of reactive systems. An alterna-
tive approach for specifying temporal prop-
erties of reactive systems is to use various
forms of automata. Because there exists a
correspondence between temporal logic for-
mulas and automata, the two approaches
are related. Temporal logic serves as a basis
for automated testing and verification.

e From temporal specifications, the test-
ing tools automatically generate finite-state
machines that accept the language of input-
output traces that violate the properties.
These finite-state machines can be used to
generate test inputs that can be fed to the
actual system to determine whether or not
its output violates one of the safety prop-
erties.  The tools that implement these
methodologies automatically alert the user
to violation of properties and provide an ex-
ecution trace that witnesses the violation.

e Automated verification is based on
model-checking. First, one uses a formal



notation to describe a high-level model of
the system under design is described. Next,
the verifier automatically checks if the given
model satisfies correctness properties by ex-
ploring the entire state space, i.e. by explor-
ing all possible interactions of the concur-
rent components. Current pragmatic expe-
rience indicates that existing tools are suc-
cessful in handling real-world problems in
the hardware domain.

Our research contribution: Triveni

Triveni is a process-algebraic framework
for concurrent object-oriented programming
with threads and events [2, 1]. Thus, Triveni
enhances the practice of threads program-
ming with ideas from the theory of con-
currency. We have implemented Triveni as
a collection of tools for the Java program-
ming language [1]. This implementation of
Triveni has the following features.

e Any Java thread that
uses an Observer-based interface for events
can serve as a primitive Triveni process. In
other words, programmers can fit existing
Java code into Triveni unchanged.

e Triveni includes a specification-based
testing environment that automates testing
of safety properties expressed in (proposi-
tional) linear time temporal logic.

This implementation of Triveni has been
used to implement and analyze a case study
involving the re-implementation of a piece
of telecommunication software; see [2].

Our course

This paper describes the design and imple-
mentation of the sophomore level course In-
troduction to Concurrency. This course in-
troduces students to process algebras and
logic-based specification and testing as tools
in the engineering of concurrent systems.
The current implementation of Triveni in

Java serves as the programming environ-
ment for the projects in the course. We
taught this course at Loyola University
Chicago in Fall 1997 and Spring 1998 with
enrollments of about 30 students each for a
total enrollment of about 60 students.

2 The Course

Our course uses a running theme, the game
of BATTLE from [2]. Figure 1 describes the
most general form of the game. For the pur-
poses of this paper, we use BATTLE to mo-
tivate the contents of this course.

Interaction and concurrency. Concur-
rency arises in BATTLE in two ways. First,
it is natural to think of the game as a con-
current composition of the players and the
game controller. In fact, because this game
does not enforce turns among players, the
resulting true asynchrony of the players es-
sentially forces concurrency on the program.

A second way in which concurrency arises
in BATTLE is as an abstraction mecha-
nism in the programming of the user in-
terface. Concurrency offers decomposition
mechanisms that support the modular de-
sign of the user-interface behavior. For in-
stance, concurrency helps to abstract over
nonessential dependencies among indepen-
dent user events. In this case, the con-
currency is not forced on the program, but
is merely an artifice to manage complexity.
However, one could argue that this is indeed
the most important use of concurrency to
realize reactive behavior.

BATTLE provides simple examples of
some issues that arise in concurrent pro-
gramming. For example, priorities ensure
that a submarine that has dived cannot be
hit, or that player 7 cannot receive shots
from player j after j notifies 7 that j has
aborted the game.

BATTLE also provides natural ways to ex-
plore the interaction of OOP and concur-
rency. For example, to ensure extensibility



BATTLE is an n-player variation of the 2-player board game Battleship. New players cannot join
the game once it has begun. A player loses by manually aborting the game or when all his/her

ships are destroyed.

Oceans.

Ships.

1. Battleships that can move on the surface of the player’s ocean.

2. Submarines that can dive, but remain at a stationary position with respect to the player

ocean’s surface.

Moves.

1. Fire a round of ammunition on a square of another player j’s ocean by clicking on it. The
ammunition may hit a previously unhit point on one of player j’s ships, in which case an X is
displayed at that point in player j’s ocean on all players’ screens. No information is reported
in case of a miss. The X marks are static; when a wounded battleship moves, or a wounded
submarine dives, it does not affect previously displayed X marks on players’ screens. When
a ship is sunk, its position is revealed to all players.

2. Impart a velocity to a battleship that lasts until it receives another velocity command.
3. Make a submarine dive for a game-specific interval of time.

4. Raise a shield over his/her entire ocean for a game-specific interval of time, during which
player i’s ships are invulnerable. When a player raises an ocean-wide shield, his/her ocean
becomes dim on the screens of all players. Each player has a limited supply of shields.

Each player has a collection of ships on an individual ocean grid. The n ocean grids
are disjoint. Each player’s screen displays all n oceans, but a player can see only his/her own
ships. A player’s ships are confined to the player’s ocean.

Each ship occupies a rectangular sub-grid of the player’s ocean and sinks after each
point in its grid area has been hit. There are two kinds of ships:

A player can move as fast as the user-interface/reflexes allow.

Player 4’s moves:

Figure 1: Rules of BATTLE

it is natural to build an abstract interface
to model the ship widgets of the player. In-
heritance arises naturally as a way to ex-
tend (concurrent) behaviors; e.g., a subma-
rine can be implemented by adding diving
capability to a generic ship.

Program correctness. The presence of
concurrency and interaction in the BATTLE
program leads to well known problems.

First, there are consistency problems as-
sociated with the concurrent access to data
structures. For example, the state of each

player can be impacted by several simulta-
neous processes such as shots from other
players, ship motion, and GUI commands.
In the literature, consistency of data struc-
tures is expressed by safety properties; the
programmer desires to ensure that “some-
thing bad does not happen”.

A dual issue arises in such programs con-
cerning progress. For example, each BAT-
TLE player must be given a chance to pro-
ceed, and the actions of each player must
eventually be transmitted to the game con-



troller and to all other players. In the liter-
ature, these are called liveness properties.

The aforementioned issues take on partic-
ular potency because of the potential lack of
repeatability in concurrent programs. This
phenomenon, termed nondeterminism in
the literature, can arise from abstraction
over the details of scheduling. For exam-
ple, in BATTLE, a shot to a player can be
either a hit or a miss depending on the time
of delivery of the shot to a moving battle-
ship.

2.1 Integration into curriculum

In the freshman year, computer science ma-
jors take CS 170: Structured Programming
(in C++) and CS 271: Structured Pro-
gramming and Data Structures (in C++).
In the sophomore year, they take the re-
quired courses CS 272: Data Abstraction
and Object-Oriented Programming, CS 211:
Discrete Structures, and CS 275: Computer
Architecture.

The prerequisites for Introduction to Con-
currency are CS 272 and CS 211. CS 272
ensures knowledge in basic programming,
data structures, algorithms, object-oriented
paradigms, and basic Java. CS 211 en-
sures familiarity with basic logic, elemen-
tary mathematical proof techniques includ-
ing induction, and rudimentary knowledge
of finite-state automata.

2.2 Course modules

Below are the modules that compose the
course. These modules are intended as a
representative collection of the topics that
the students will learn in the course.

1. Specification.

(a) Temporal logic. Safety, liveness,
and bounded-response properties.

(b) Automata as specifications.

(c) Generating test cases from speci-
fications.

2. Design of concurrent and interactive
programs.

(a) Process algebras.

(b) Parallel composition as a structur-
ing mechanism.

(c) Preemption mechanisms: process
abortion, process suspension, in-
terrupts.

3. Triveni. Case studies in Triveni.

4. Implementation of concurrent pro-
gramming languages.

(a) Automata as abstractions of inter-
action.

(b) Thread programming for manag-
ing concurrency.

The instructor can package these course
modules in several different ways for a one-
semester course. In the first rendering of
the course, we focused on the design and
implementation of concurrent programs in
Triveni and the design and implementation
of Triveni itself (topics (2), (3), and (4)). In
the second rendering, we deemphasized (4)
and spent some time on the case studies and
testing issues (topics (1c), (2), (3)).

2.3 Assignments
Our assignments were organized around the
game of BATTLE.

Assignment 1

Aim: Introduction to events and event han-
dlers.

Sketch:  Implement a 2-player version
of BATTLE with following restrictions on
Player moves. The players takes turns. At
each turn, a player can do one of two things:
fire a shot or place a ship. If a shot hits an
Opponent ship then the same player gets to



shoot again. This restriction on the flow of
the game removes the genuine asynchrony
present in the full version of BATTLE and
allows the students to implement the pro-
gram without threads and with a knowledge
of only AWT events.

Assignment 2

Aim:  Introduction to (Mealy) automata
as abstractions of controllers. Implementa-
tion of combinators, including parallel com-
position and preemption, on finite-state au-
tomata.

Sketch: Implement a framework for finite-
state machines with combinators. The stu-
dents are provided with skeleton code for
most of the classes as well as a driver for
testing. The students then reimplement
the controller of Assignment 1 using this
framework. Apropos, this assignment intro-
duces some design patterns. For instance,
FSM transitions are equipped with actions
that are realized via the Command pattern,
and the Observer pattern connects the FSM
with the actual AWT events.

Assignment 3

Aim: A medium-scale group project with
two primary goals: illustrate the use of con-
currency as a decomposition tool at the time
of design and implementation, and illustrate
the use of logic-based specifications as asser-
tions to aid in debugging programs.

Sketch:  Implement a full-scale version of
BATTLE. The user interface itself is written
as a Triveni program to handle all possible
sequences of interactions with the user. The
controller is also written as a Triveni pro-
gram. The students are given glue code to
connect the user interface to the controller,
i.e., the transmission of events from the user
interface to the game controller is automatic

and transparent from the student’s point of
view.

3 Conclusions
Because our course is modular in structure,
in the long run we propose to make the
course an integral component of our under-
graduate curriculum by (a) continuing to of-
fer the course as an elective with periodic re-
visions and upgrades and (b) migrating the
course materials into existing courses such
as CS 272 and CS 375: Software Engineer-
ing. We also envision a series of courses cen-
tered around the themes of the course that
develop the course modules in greater depth
and detail than is possible in a sophomore
one-semester course.

We are also investigating the possibility
of introducing this material at the introduc-
tory level in the curriculum.

References

[1] C. Colby, L. J. Jagadeesan, R. Jagadeesan,
K. Laufer, and C. Puchol. Design and
implementation of Triveni: A process-

algebraic API for threads + events. In
Proceedings of the 1998 IEEE ICCL. IEEE
Computer Press.

[2] C. Colby, L. J. Jagadeesan, R. Jagadeesan,
K. Laufer, and C. Puchol. Objects and pro-
cesses in Triveni: A telecommunication case
study in java. In Proceedings of the 1998

Useniz COOTS.

[3] N. Halbwachs. Synchronous programming
of reactive systems. Kluwer Academic pub-
lishers, 1993.

[4] C. A. R. Hoare. Communicating Sequential
Processes. Prentice Hall, 1985.

[6] Z. Manna and A. Pnueli.
Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1991. 427 pp.

The Temporal

[6] R. Milner. Communication and Concur-

rency. Series in Computer Science. Prentice
Hall, 1989.



A Triveni: an example
To introduce Triveni and illustrate various
features of Triveni, we describe an environ-
mental control system for an office building
from [1]. This example occupied about 7
hours of class lecture time.

We begin with the notion of an office
I/0, which is a system that accepts as in-
put the events that control the environ-
ment of an office (heating and lighting) and
emits as output the various events neces-
sary to communicate with the rest of the
environment-control system. Some of these
emitted events may originate from an action
by a human occupant (switch on/off, door
open/close, and temperature request). The
remaining output event is a physical tem-
perature reading, which may be automati-
cally generated from time to time.

A thermostat partially automates the
temperature control of an office. The pseu-
docode realization in Triveni of these pro-
cesses is shown below, along with a diagram
giving the interface of each process in terms
of the events that it emits and accepts. Note
that some events carry temperature data.

temperature-stable office

HeatOff

SetTemp(t)

thermostat

HeatOn Temp(t)

RequestTemp(t)
SwitchOn
SwitchOff

LightOff DoorOpen
DoorClose

LightOn office 1/0

thermostat:

temp actual_temp
temp target_temp

INITIAL_ACTUAL_TEMP;
INITIAL_TARGET_TEMP;

LOOP
Temp(t) -> { actual_temp = t; }

EMIT (t < target_temp) 7 HeatOn : HeatOff
I
SetTemp(t) -> { target_temp = t; }
EMIT (actual_temp < t) ? HeatOn : HeatOff

The LOOP combinator in the thermostat
implements an “event loop”. The body of

the loop is a parallel composition (using the
| | combinator) of two processes. The first
process responds if the current event is of
the form Temp(t) (i.e., a physical tempera-
ture reading); on any other event, it termi-
nates silently. It is similar for the second
process and events of form SetTemp(t). In
both parallel components, two things hap-
pen on receipt of the specified event: an as-
signment takes place and an event is emit-
ted to control a heater. The assignment
is an action, written between braces, and
may in general be any code in the host
programming language (typically something
that terminates quickly). The EMIT combi-
nator emits an event. Events are delivered
eventually (and simultaneously) to all inter-
ested listeners and the emitting process ter-
minates.

A thermostat is attached to an office 1/O
simply by composing them in parallel, yield-
ing a temperature-stable office. The parallel
composition automatically ensures that the
HeatOn, HeatOff, and Temp(t) events are
transmitted between the two subprocesses.
In this case, these three events are hidden
with the LOCAL combinator so that they are
not accessible externally as either inputs or
outputs, as shown in the diagram above..

temperature_stable_office:

office_I0 io;
thermostat therm;

LOCAL HeatOn HeatOff Temp
IN io || therm

The occupant of an office has manual con-
trol over the heat and lights via the occupant
control process.

occupant_control:

LOOP
RequestTemp(t) -> EMIT SetTemp(t)
|| SwitchOn -> EMIT LightOn
|| SwitchOff -> EMIT LightOff

Upon SwitchOn, the above process will
eventually emit LightOn. Triveni makes no



guarantee as to the timing of event emis-
sion, so it is possible that SwitchOff could
arrive before LightOn is emitted and thus
would not actually turn off the light. Later,
we will show a programming style to bul-
letproof against such cases. But in this
case, SwitchOn and SwitchOff originate from
human actions, and because we can rea-
sonably assume that the light comes on
faster than a human can flip the switch, we
would not expect the bad case ever to occur.
Triveni supports a notion of “assert” state-
ments appropriate for concurrent programs,
namely temporal-logic formulas, to express
such safety properties. For instance,

LightOnPending =q¢r —LightOn § SwitchOn

expresses the property of a single point
during an execution run that “LightOn did
not occur since the most recent SwitchOn.”
Then, the formula SwOffSafety defined
as: O(SwitchOff — —LightOnPending) ex-
presses the property of an entire execu-
tion (read O as “always”) that “when-
ever SwitchOff occurs, there is no pending
LightOn”. Adding SwOffSafety (and the
symmetric property for SwitchOn) to the
office program generates a run-time error
whenever the property is violated.

An office can be in two modes, occupant
mode and economy mode. Occupant mode
is the normal mode of operation, as im-
plemented by the occupant-control process
above. In economy mode, the tempera-
ture is reduced to and held at a specified
value, despite any requests otherwise, and
the lights are turned off and the switch dis-
abled. The EconomyMode(t) event puts an
office into economy mode, lowering the tem-
perature to t, and the OccupantMode event
returns the office to occupant mode, restor-
ing the requested temperature to the most
recent observed request. In addition, if an
office is in economy mode, it should tem-
porarily revert to occupant mode when the

door is open, in case someone arrives in the
middle of the night to work; in that case,
the office returns to economy mode when
the door is closed.

The economy control process implements
this control, emitting Sleep(t) whenever the
office should enter economy mode, lowering
the temperature to t, and emitting Awake(t)
whenever the office should return to occu-
pant mode, restoring the temperature to t.
The process runs three subprocesses in par-
allel. The first one monitors continuously
the vlast requested temperature. The sec-
ond and third parallel components deter-
mine when the office should change modes.
Note that the code establishes mutual exclu-
sion between occupant and economy mode.

On receipt of event EconomyMode, a pro-
cess enters a loop that monitors the status
of the office door. The invariant upon entry
to the loop is that the office has just been
placed in economy mode and needs to be
put to sleep. While Sleep is being emitted,
the AWAIT combinator waits until DoorOpen
occurs. In the case that DoorOpen arrives
while the emission of Sleep is still pending,
the emission is aborted via the DO/WATCHING
combinator to ensure consistency. When
the door becomes open, a symmetric process
emits Awake and waits for DoorClose. On re-
ceipt of OccupantMode, the door-monitoring
loop is preempted and the office returns to
occupant mode.

economy_control:

temp last_temp = INITIAL_TARGET_TEMP;
temp economy;

LOOP RequestTemp(t) -> { last_temp = t; }
|| LOOP EconomyMode(t) -> { economy = t; }
DO
Loop
DO EMIT Sleep WATCHING DoorOpen
Il AWAIT DoorOpen ->
DO EMIT Awake
WATCHING DoorClose
|| AWAIT DoorClose -> DONE
WATCHING OccupantMode
|| LOOP OccupantMode ->
DO
EMIT Awake(last_temp)
WATCHING EconomyMode




Now we build an office control process
from an occupant-control process and an
economy-control process. The occupant-
control process is disabled during economy
mode using the SUSPEND/RESUME combina-
tor, which suspends a process on receipt, of
a specified event (Sleep in this case) and re-
sumes it on another event (Awake in this
case). Thus, whenever the economy control
sends a Sleep event, the occupant will lose
control of the light and heat until the econ-
omy control sends an Awake event. Two mu-
tually exclusive processes (not shown in the
picture) run in parallel with the occupant
control and the economy control to adjust
the light and heat appropriately whenever
the office toggles modes.

office control

SwitchOn SetTemp(t)
SwitchOff occupant control LightOn
suspend resume LightOff

RequestTemp(t) — Sleep(t) |Awake(t)

DoorOpen economy control

DoorClose

EconomyMode(t)  OccupantMode

office_control:

occupant_control oc;
economy_control ec;

LOCAL Sleep Awake

IN

ec

oc SUSPEND Sleep RESUME Awake

LOOP

Sleep(t) -> DO EMIT SetTemp(t)

|| EMIT LightOff
WATCHING Awake

|1 LOOP

Awake(t) -> DO EMIT SetTemp(t)

WATCHING Sleep

Let us sprinkle in some temporal safety
properties to be checked during execution.

Awake =qer (—Sleep S Awake) V' EI(—Sleep)
SwOn =qef ~SwitchOff & SwitchOn

where El(—=Sleep) means that Sleep never oc-
curred (i.e., an office is initially awake), we

can specify that whenever LightOn occurs,
both the office must be awake (no Sleep since
the last Awake) and the switch must be on:
O(LightOn — Awake A SwOn)

To complete the implementation of a sin-
gle office, we compose a temperature-stable
office with an office control. The result-
ing office process emits no events and ac-
cepts only events EconomyMode(t) and Oc-
cupantMode. The LOCAL combinator hides
all other events. Finally, multiple offices are
combined into an entire floor of an office
building.

office
DoorO
LightOn oorpen
DoorClose
. t R -
Light Off Cotlile SwitchOn

office | SwitchOff

SetTemp(t) RequestTemp(t)

office

control

7} 7}

EconomyMode(t) OccupantMode

office:

temperature_stable_office tso;
office_control oc;

LOCAL SwitchOn Switch0ff LightOn LightOff
RequestTemp SetTemp DoorOpen DoorClose
IN tso || oc
building_floor:

building_floor bf;
office o;

bf || o

The implementation above allows offices
to be added one by one. The entire floor is
commanded to be placed in economy mode
and to be restored to occupant mode as a
whole. However, while in economy mode,
individual offices may temporarily revert to
occupant mode due to door activity, as de-
scribed above.


https://www.researchgate.net/publication/2762843

