
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2762843

Interaction, Concurrency, and OOP in the Curriculum: a Sophomore Course

Article · November 1998

Source: CiteSeer

CITATION

1
READS

36

4 authors, including:

Radha Jagadeesan

DePaul University

120 PUBLICATIONS 4,983 CITATIONS

SEE PROFILE

Konstantin Läufer

Loyola University Chicago

68 PUBLICATIONS 631 CITATIONS

SEE PROFILE

All content following this page was uploaded by Radha Jagadeesan on 24 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2762843_Interaction_Concurrency_and_OOP_in_the_Curriculum_a_Sophomore_Course?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2762843_Interaction_Concurrency_and_OOP_in_the_Curriculum_a_Sophomore_Course?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Radha-Jagadeesan?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Radha-Jagadeesan?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/DePaul_University?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Radha-Jagadeesan?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Konstantin-Laeufer?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Konstantin-Laeufer?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Loyola-University-Chicago?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Konstantin-Laeufer?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Radha-Jagadeesan?enrichId=rgreq-ae009989b2ee67e9482ffaa9ec683da0-XXX&enrichSource=Y292ZXJQYWdlOzI3NjI4NDM7QVM6MTE0OTQyNDc2ODIwNDgyQDE0MDQ0MTU4MzA2MjM%3D&el=1_x_10&_esc=publicationCoverPdf

Interaction, Concurrency, and OOP in the Curriculum:a Sophomore Course�Christopher Colby Radha Jagadeesan Konstantin L�auferChandra SekharanDepartment of Math and CS, Loyola University Chicago6525 N. Sheridan Road, Chicago, IL 60626fcolby,radha,laufer,chandrag@cs.luc.eduhttp://www.cs.luc.edu/~fcolby,radha,laufer,chandragAbstractWe argue that a computer-science curricu-lum should introduce the principles of con-current programming in an integrated, co-herent, and application-independent fashionearly in the major. We have incorporatedcurrent research into our curriculum. Wedescribe a sophomore-level course on thefundamentals of concurrent and interactiveprogramming that is the fruit of this work.We o�ered this course to about 60 studentsin Fall 1997 and Spring 1998.Information regarding the software frame-works for the programming assignments canbe obtained by contacting the authors.1 IntroductionWhat is wrong?The world is full of concurrent systems.Consider� real-time systems� signal-processing systems� telecommunication systems� graphical user interfaces� operating systems� multiprocessors and pipelining�R. Jagadeesan and C. Colby were supported inpart by NSF CAREER grants.

� distributed algorithmsto name but a few ubiquitous examples.What all of these systems have in common isthe notion of multiple subsystems that com-municate with each other or with their en-vironment.How do these systems come into being?Computer scientists always learn the fun-damentals of sequential computing early intheir education, but rarely ever learn thefundamentals of concurrent computing. Tocover concurrent systems, the typical under-graduate curriculum instead o�ers a seriesof application-speci�c courses, usually at thejunior or senior level. For instance:1. Operating Systems. For example, everypart of Nachos, a popular educationaloperating system, uses threads to man-age concurrency.2. (Telecommunication) Networks. Con-currency is used to describe and ana-lyze protocols at various levels of a hi-erarchy, such as the physical level, thedata link level, and so forth.3. Software Engineering. For instance, in-teractive graphical user interfaces are

an important class of applications stud-ied and implemented in such courses.4. Computer Architecture. The combina-tion of circuits is arguably the simplestand most natural example of concur-rent computation. Furthermore, con-currency arises as a natural abstractionin understanding topics such as pipelin-ing and multiprocessors.A �xed set of application-speci�c coursesis bound to be both an incomplete cov-erage of present technology and an inade-quate preparation for future technology. Incontrast, the typical courses in sequentialcomputation|programming, data struc-tures, algorithms, etc.|teach application-independent problem-solving skills and arehence far more adaptable.The problem, as we see it, is that concur-rency and interaction are not taught at aconceptual level, but at an application level.It is not taught as a means, but as an end.A better approachWe argue that a computer-science curricu-lum should introduce the principles of con-current programming in an integrated, co-herent, and application-independent fashionearly in the major. We believe that thisis now possible, having successfully adaptedour current research to the undergraduatecomputer-science curriculum at Loyola Uni-versity Chicago in a course called Introduc-tion to Concurrency. Furthermore, we be-lieve that students should absorb this mate-rial at an early stage of their education.A coherent introduction to interactiveand concurrent programming at an earlystage o�ers the following advantages.� Programming methodology. Interac-tive and concurrent computing introducesstudents to a powerful programming idiom

and structuring methodology|the concep-tual decomposition into modules that runconcurrently. Pedagogically, we believe theright time to introduce students to theseideas is before the idioms and methodol-ogy of sequential programming become in-grained as the instinctive and primary wayof thinking about problem solving, algo-rithms, and programming.� Speci�cation, Testing, and Veri�ca-tion. Early in their education, undergrad-uate students should learn about the formalspeci�cation of programs, the generation oftest cases from speci�cations, and the for-mal veri�cation of programs as an integralpart of the programming process, whetherconcurrent or sequential. From a pedagog-ical point of view, the subtleties of concur-rent programs such as time-dependent be-haviors and nondeterminism form a peda-gogical setting to emphasize these ideas.But how?Most complex concurrent applications com-bine two ideas:� Reactivity. Reactive systems areevent-driven systems that interact continu-ously with their environment at a rate con-trolled by the environment. Execution insuch systems proceeds as bursts of activity.In each phase, the environment stimulatesthe system with an input, obtains a responsewithin a bounded amount of time, and maythen be dormant for an arbitrary period oftime before initiating the next burst.� Asynchrony. In asynchronous sys-tems, processes are loosely coupled andcommunication can take an arbitraryamount of time.To understand these systems in a coher-ent and application-independent manner,we look to the body of research in concur-rent programming. There are two matureand relevant strands of research into the

speci�cation and design of concurrent sys-tems:1. process algebras and synchronous pro-gramming languages2. temporal logic, testing, and veri�cationWe discuss each of these in turn to suggesthow they can help achieve our pedagogicalgoal.1. Process algebras and synchronous pro-gramming languages. The key feature ofprocess algebras (e.g., CCS [6], CSP [4]) andsynchronous programming languages (e.g.,see [3]) is a notion of abstract behavior,which in a concurrent system is essentiallythe interaction of the system with its envi-ronment. Communication takes place via(labeled) events that are abstractions ofnames of communication channels.Programs can be combined freely withcombinators, and one need only be con-cerned about the desired e�ects on the re-sulting behavior. That is, combinators op-erate on behaviors, and the results of thecombinators are behaviors. For instance:� The parallel-composition combinatorallows two (interactive) programs to runconcurrently and communicate with eachother. The result is a single (interactive)program that is indistinguishable from asimple one (in much the same way that anobject built by object composition has thesame status as a simple object). Thus, onemay use parallel composition freely for themodular decomposition of designs.� Preemption combinators allow pro-grams to be controlled by events. Forexample, the watchdog combinator DO PWATCHING e yields a process that behaveslike P until event e happens, upon whichexecution of P is terminated (in the spiritof \Ctrl{C"). Analogous to exception mech-anisms in traditional programming lan-guages, the preemption combinators aid

in program modularity; for example, thewatchdog above avoids the pollution of Pwith information about the event e. Excep-tions have �rst class status; any event can bean exception and can be used in the place ofe in the watchdog. This allows exceptions toplay an integral role in in the programmingof systems. Nesting preemption operatorsestablishes priorities on events; for exam-ple, the event e2 has higher priority than theevent e1 in the program fragment DO (DO PWATCHING e1) WATCHING e2. We note thatthe programming language does not con-strain these priorities; rather, the prioritiesare determined by the program itself.2. Temporal logic, testing and veri�ca-tion. Temporal logic augments traditionallogic with modal operators that operate onthe time domain (see [5] for a survey). Ex-tensive research has yielded an ample collec-tion of examples and speci�cation method-ologies establishing temporal logic as anexpressive language for the description ofproperties of reactive systems. An alterna-tive approach for specifying temporal prop-erties of reactive systems is to use variousforms of automata. Because there exists acorrespondence between temporal logic for-mulas and automata, the two approachesare related. Temporal logic serves as a basisfor automated testing and veri�cation.� From temporal speci�cations, the test-ing tools automatically generate �nite-statemachines that accept the language of input-output traces that violate the properties.These �nite-state machines can be used togenerate test inputs that can be fed to theactual system to determine whether or notits output violates one of the safety prop-erties. The tools that implement thesemethodologies automatically alert the userto violation of properties and provide an ex-ecution trace that witnesses the violation.� Automated veri�cation is based onmodel-checking. First, one uses a formal

notation to describe a high-level model ofthe system under design is described. Next,the veri�er automatically checks if the givenmodel satis�es correctness properties by ex-ploring the entire state space, i.e. by explor-ing all possible interactions of the concur-rent components. Current pragmatic expe-rience indicates that existing tools are suc-cessful in handling real-world problems inthe hardware domain.Our research contribution: TriveniTriveni is a process-algebraic frameworkfor concurrent object-oriented programmingwith threads and events [2, 1]. Thus, Trivenienhances the practice of threads program-ming with ideas from the theory of con-currency. We have implemented Triveni asa collection of tools for the Java program-ming language [1]. This implementation ofTriveni has the following features.� Any Java thread thatuses an Observer-based interface for eventscan serve as a primitive Triveni process. Inother words, programmers can �t existingJava code into Triveni unchanged.� Triveni includes a speci�cation-basedtesting environment that automates testingof safety properties expressed in (proposi-tional) linear time temporal logic.This implementation of Triveni has beenused to implement and analyze a case studyinvolving the re-implementation of a pieceof telecommunication software; see [2].Our courseThis paper describes the design and imple-mentation of the sophomore level course In-troduction to Concurrency. This course in-troduces students to process algebras andlogic-based speci�cation and testing as toolsin the engineering of concurrent systems.The current implementation of Triveni in

Java serves as the programming environ-ment for the projects in the course. Wetaught this course at Loyola UniversityChicago in Fall 1997 and Spring 1998 withenrollments of about 30 students each for atotal enrollment of about 60 students.2 The CourseOur course uses a running theme, the gameof Battle from [2]. Figure 1 describes themost general form of the game. For the pur-poses of this paper, we use Battle to mo-tivate the contents of this course.Interaction and concurrency. Concur-rency arises in Battle in two ways. First,it is natural to think of the game as a con-current composition of the players and thegame controller. In fact, because this gamedoes not enforce turns among players, theresulting true asynchrony of the players es-sentially forces concurrency on the program.A second way in which concurrency arisesin Battle is as an abstraction mecha-nism in the programming of the user in-terface. Concurrency o�ers decompositionmechanisms that support the modular de-sign of the user-interface behavior. For in-stance, concurrency helps to abstract overnonessential dependencies among indepen-dent user events. In this case, the con-currency is not forced on the program, butis merely an arti�ce to manage complexity.However, one could argue that this is indeedthe most important use of concurrency|torealize reactive behavior.Battle provides simple examples ofsome issues that arise in concurrent pro-gramming. For example, priorities ensurethat a submarine that has dived cannot behit, or that player i cannot receive shotsfrom player j after j noti�es i that j hasaborted the game.Battle also provides natural ways to ex-plore the interaction of OOP and concur-rency. For example, to ensure extensibility

Battle is an n-player variation of the 2-player board game Battleship. New players cannot jointhe game once it has begun. A player loses by manually aborting the game or when all his/herships are destroyed.Oceans. Each player has a collection of ships on an individual ocean grid. The n ocean gridsare disjoint. Each player's screen displays all n oceans, but a player can see only his/her ownships. A player's ships are con�ned to the player's ocean.Ships. Each ship occupies a rectangular sub-grid of the player's ocean and sinks after eachpoint in its grid area has been hit. There are two kinds of ships:1. Battleships that can move on the surface of the player's ocean.2. Submarines that can dive, but remain at a stationary position with respect to the playerocean's surface.Moves. A player can move as fast as the user-interface/re
exes allow. Player i's moves:1. Fire a round of ammunition on a square of another player j's ocean by clicking on it. Theammunition may hit a previously unhit point on one of player j's ships, in which case an X isdisplayed at that point in player j's ocean on all players' screens. No information is reportedin case of a miss. The X marks are static; when a wounded battleship moves, or a woundedsubmarine dives, it does not a�ect previously displayed X marks on players' screens. Whena ship is sunk, its position is revealed to all players.2. Impart a velocity to a battleship that lasts until it receives another velocity command.3. Make a submarine dive for a game-speci�c interval of time.4. Raise a shield over his/her entire ocean for a game-speci�c interval of time, during whichplayer i's ships are invulnerable. When a player raises an ocean-wide shield, his/her oceanbecomes dim on the screens of all players. Each player has a limited supply of shields.Figure 1: Rules of Battleit is natural to build an abstract interfaceto model the ship widgets of the player. In-heritance arises naturally as a way to ex-tend (concurrent) behaviors; e.g., a subma-rine can be implemented by adding divingcapability to a generic ship.Program correctness. The presence ofconcurrency and interaction in the Battleprogram leads to well known problems.First, there are consistency problems as-sociated with the concurrent access to datastructures. For example, the state of each

player can be impacted by several simulta-neous processes such as shots from otherplayers, ship motion, and GUI commands.In the literature, consistency of data struc-tures is expressed by safety properties; theprogrammer desires to ensure that \some-thing bad does not happen".A dual issue arises in such programs con-cerning progress. For example, each Bat-tle player must be given a chance to pro-ceed, and the actions of each player musteventually be transmitted to the game con-

troller and to all other players. In the liter-ature, these are called liveness properties.The aforementioned issues take on partic-ular potency because of the potential lack ofrepeatability in concurrent programs. Thisphenomenon, termed nondeterminism inthe literature, can arise from abstractionover the details of scheduling. For exam-ple, in Battle, a shot to a player can beeither a hit or a miss depending on the timeof delivery of the shot to a moving battle-ship.2.1 Integration into curriculumIn the freshman year, computer science ma-jors take CS 170: Structured Programming(in C++) and CS 271: Structured Pro-gramming and Data Structures (in C++).In the sophomore year, they take the re-quired courses CS 272: Data Abstractionand Object-Oriented Programming, CS 211:Discrete Structures, and CS 275: ComputerArchitecture.The prerequisites for Introduction to Con-currency are CS 272 and CS 211. CS 272ensures knowledge in basic programming,data structures, algorithms, object-orientedparadigms, and basic Java. CS 211 en-sures familiarity with basic logic, elemen-tary mathematical proof techniques includ-ing induction, and rudimentary knowledgeof �nite-state automata.2.2 Course modulesBelow are the modules that compose thecourse. These modules are intended as arepresentative collection of the topics thatthe students will learn in the course.1. Speci�cation.(a) Temporal logic. Safety, liveness,and bounded-response properties.(b) Automata as speci�cations.(c) Generating test cases from speci-�cations.

2. Design of concurrent and interactiveprograms.(a) Process algebras.(b) Parallel composition as a structur-ing mechanism.(c) Preemption mechanisms: processabortion, process suspension, in-terrupts.3. Triveni. Case studies in Triveni.4. Implementation of concurrent pro-gramming languages.(a) Automata as abstractions of inter-action.(b) Thread programming for manag-ing concurrency.The instructor can package these coursemodules in several di�erent ways for a one-semester course. In the �rst rendering ofthe course, we focused on the design andimplementation of concurrent programs inTriveni and the design and implementationof Triveni itself (topics (2), (3), and (4)). Inthe second rendering, we deemphasized (4)and spent some time on the case studies andtesting issues (topics (1c), (2), (3)).2.3 AssignmentsOur assignments were organized around thegame of Battle.Assignment 1Aim: Introduction to events and event han-dlers.Sketch: Implement a 2-player versionof Battle with following restrictions onPlayer moves. The players takes turns. Ateach turn, a player can do one of two things:�re a shot or place a ship. If a shot hits anOpponent ship then the same player gets to

shoot again. This restriction on the
ow ofthe game removes the genuine asynchronypresent in the full version of Battle andallows the students to implement the pro-gram without threads and with a knowledgeof only AWT events.Assignment 2Aim: Introduction to (Mealy) automataas abstractions of controllers. Implementa-tion of combinators, including parallel com-position and preemption, on �nite-state au-tomata.Sketch: Implement a framework for �nite-state machines with combinators. The stu-dents are provided with skeleton code formost of the classes as well as a driver fortesting. The students then reimplementthe controller of Assignment 1 using thisframework. Apropos, this assignment intro-duces some design patterns. For instance,FSM transitions are equipped with actionsthat are realized via the Command pattern,and the Observer pattern connects the FSMwith the actual AWT events.Assignment 3Aim: A medium-scale group project withtwo primary goals: illustrate the use of con-currency as a decomposition tool at the timeof design and implementation, and illustratethe use of logic-based speci�cations as asser-tions to aid in debugging programs.Sketch: Implement a full-scale version ofBattle. The user interface itself is writtenas a Triveni program to handle all possiblesequences of interactions with the user. Thecontroller is also written as a Triveni pro-gram. The students are given glue code toconnect the user interface to the controller,i.e., the transmission of events from the userinterface to the game controller is automatic

and transparent from the student's point ofview.3 ConclusionsBecause our course is modular in structure,in the long run we propose to make thecourse an integral component of our under-graduate curriculum by (a) continuing to of-fer the course as an elective with periodic re-visions and upgrades and (b) migrating thecourse materials into existing courses suchas CS 272 and CS 375: Software Engineer-ing. We also envision a series of courses cen-tered around the themes of the course thatdevelop the course modules in greater depthand detail than is possible in a sophomoreone-semester course.We are also investigating the possibilityof introducing this material at the introduc-tory level in the curriculum.References[1] C. Colby, L. J. Jagadeesan, R. Jagadeesan,K. L�aufer, and C. Puchol. Design andimplementation of Triveni: A process-algebraic API for threads + events. InProceedings of the 1998 IEEE ICCL. IEEEComputer Press.[2] C. Colby, L. J. Jagadeesan, R. Jagadeesan,K. L�aufer, and C. Puchol. Objects and pro-cesses in Triveni: A telecommunication casestudy in java. In Proceedings of the 1998Usenix COOTS.[3] N. Halbwachs. Synchronous programmingof reactive systems. Kluwer Academic pub-lishers, 1993.[4] C. A. R. Hoare. Communicating SequentialProcesses. Prentice Hall, 1985.[5] Z. Manna and A. Pnueli. The TemporalLogic of Reactive and Concurrent Systems.Springer-Verlag, 1991. 427 pp.[6] R. Milner. Communication and Concur-rency. Series in Computer Science. PrenticeHall, 1989.

A Triveni: an exampleTo introduce Triveni and illustrate variousfeatures of Triveni, we describe an environ-mental control system for an o�ce buildingfrom [1]. This example occupied about 7hours of class lecture time.We begin with the notion of an o�ceI/O, which is a system that accepts as in-put the events that control the environ-ment of an o�ce (heating and lighting) andemits as output the various events neces-sary to communicate with the rest of theenvironment-control system. Some of theseemitted events may originate from an actionby a human occupant (switch on/o�, dooropen/close, and temperature request). Theremaining output event is a physical tem-perature reading, which may be automati-cally generated from time to time.A thermostat partially automates thetemperature control of an o�ce. The pseu-docode realization in Triveni of these pro-cesses is shown below, along with a diagramgiving the interface of each process in termsof the events that it emits and accepts. Notethat some events carry temperature data.�. ------
�--- SetTemp(t)RequestTemp(t)SwitchOnSwitchO�DoorOpenDoorCloseTemp(t)LightOnLightO�

HeatO�HeatOntemperature-stable o�cethermostato�ce I/Othermostat:temp actual_temp = INITIAL_ACTUAL_TEMP;temp target_temp = INITIAL_TARGET_TEMP;LOOP Temp(t) -> { actual_temp = t; }EMIT (t < target_temp) ? HeatOn : HeatOff|| SetTemp(t) -> { target_temp = t; }EMIT (actual_temp < t) ? HeatOn : HeatOffThe LOOP combinator in the thermostatimplements an \event loop". The body of

the loop is a parallel composition (using the|| combinator) of two processes. The �rstprocess responds if the current event is ofthe form Temp(t) (i.e., a physical tempera-ture reading); on any other event, it termi-nates silently. It is similar for the secondprocess and events of form SetTemp(t). Inboth parallel components, two things hap-pen on receipt of the speci�ed event: an as-signment takes place and an event is emit-ted to control a heater. The assignmentis an action, written between braces, andmay in general be any code in the hostprogramming language (typically somethingthat terminates quickly). The EMIT combi-nator emits an event. Events are deliveredeventually (and simultaneously) to all inter-ested listeners and the emitting process ter-minates.A thermostat is attached to an o�ce I/Osimply by composing them in parallel, yield-ing a temperature-stable o�ce. The parallelcomposition automatically ensures that theHeatOn, HeatO�, and Temp(t) events aretransmitted between the two subprocesses.In this case, these three events are hiddenwith the LOCAL combinator so that they arenot accessible externally as either inputs oroutputs, as shown in the diagram above..temperature_stable_office:office_IO io;thermostat therm;LOCAL HeatOn HeatOff TempIN io || thermThe occupant of an o�ce has manual con-trol over the heat and lights via the occupantcontrol process.occupant_control:LOOP RequestTemp(t) -> EMIT SetTemp(t)|| SwitchOn -> EMIT LightOn|| SwitchOff -> EMIT LightOffUpon SwitchOn, the above process willeventually emit LightOn. Triveni makes no

guarantee as to the timing of event emis-sion, so it is possible that SwitchO� couldarrive before LightOn is emitted and thuswould not actually turn o� the light. Later,we will show a programming style to bul-letproof against such cases. But in thiscase, SwitchOn and SwitchO� originate fromhuman actions, and because we can rea-sonably assume that the light comes onfaster than a human can
ip the switch, wewould not expect the bad case ever to occur.Triveni supports a notion of \assert" state-ments appropriate for concurrent programs,namely temporal-logic formulas, to expresssuch safety properties. For instance,LightOnPending =def :LightOn S SwitchOnexpresses the property of a single pointduring an execution run that \LightOn didnot occur since the most recent SwitchOn."Then, the formula SwO�Safety de�nedas: 2(SwitchO� ! :LightOnPending) ex-presses the property of an entire execu-tion (read 2 as \always") that \when-ever SwitchO� occurs, there is no pendingLightOn". Adding SwO�Safety (and thesymmetric property for SwitchOn) to theo�ce program generates a run-time errorwhenever the property is violated.An o�ce can be in two modes, occupantmode and economy mode. Occupant modeis the normal mode of operation, as im-plemented by the occupant-control processabove. In economy mode, the tempera-ture is reduced to and held at a speci�edvalue, despite any requests otherwise, andthe lights are turned o� and the switch dis-abled. The EconomyMode(t) event puts ano�ce into economy mode, lowering the tem-perature to t, and the OccupantMode eventreturns the o�ce to occupant mode, restor-ing the requested temperature to the mostrecent observed request. In addition, if ano�ce is in economy mode, it should tem-porarily revert to occupant mode when the

door is open, in case someone arrives in themiddle of the night to work; in that case,the o�ce returns to economy mode whenthe door is closed.The economy control process implementsthis control, emitting Sleep(t) whenever theo�ce should enter economy mode, loweringthe temperature to t, and emitting Awake(t)whenever the o�ce should return to occu-pant mode, restoring the temperature to t.The process runs three subprocesses in par-allel. The �rst one monitors continuouslythe vlast requested temperature. The sec-ond and third parallel components deter-mine when the o�ce should change modes.Note that the code establishes mutual exclu-sion between occupant and economy mode.On receipt of event EconomyMode, a pro-cess enters a loop that monitors the statusof the o�ce door. The invariant upon entryto the loop is that the o�ce has just beenplaced in economy mode and needs to beput to sleep. While Sleep is being emitted,the AWAIT combinator waits until DoorOpenoccurs. In the case that DoorOpen arriveswhile the emission of Sleep is still pending,the emission is aborted via the DO/WATCHINGcombinator to ensure consistency. Whenthe door becomes open, a symmetric processemits Awake and waits for DoorClose. On re-ceipt of OccupantMode, the door-monitoringloop is preempted and the o�ce returns tooccupant mode.economy_control:temp last_temp = INITIAL_TARGET_TEMP;temp economy;LOOP RequestTemp(t) -> { last_temp = t; }|| LOOP EconomyMode(t) -> { economy = t; }DOLOOP DO EMIT Sleep WATCHING DoorOpen|| AWAIT DoorOpen ->DO EMIT AwakeWATCHING DoorClose|| AWAIT DoorClose -> DONEWATCHING OccupantMode|| LOOP OccupantMode ->DOEMIT Awake(last_temp)WATCHING EconomyMode

Now we build an o�ce control processfrom an occupant-control process and aneconomy-control process. The occupant-control process is disabled during economymode using the SUSPEND/RESUME combina-tor, which suspends a process on receipt ofa speci�ed event (Sleep in this case) and re-sumes it on another event (Awake in thiscase). Thus, whenever the economy controlsends a Sleep event, the occupant will losecontrol of the light and heat until the econ-omy control sends an Awake event. Two mu-tually exclusive processes (not shown in thepicture) run in parallel with the occupantcontrol and the economy control to adjustthe light and heat appropriately wheneverthe o�ce toggles modes.
p------

6 66 6SwitchOnSwitchO�RequestTemp(t)DoorCloseDoorOpen SetTemp(t)LightOnLightO�o�ce control

economy controloccupant controlSleep(t) Awake(t)
EconomyMode(t) OccupantMode

suspend resume
office_control:occupant_control oc;economy_control ec;LOCAL Sleep AwakeIN ec|| oc SUSPEND Sleep RESUME Awake|| LOOPSleep(t) -> DO EMIT SetTemp(t)|| EMIT LightOffWATCHING Awake|| LOOPAwake(t) -> DO EMIT SetTemp(t)WATCHING SleepLet us sprinkle in some temporal safetyproperties to be checked during execution.Awake =def (:Sleep S Awake) _ -2(:Sleep)SwOn =def :SwitchO� S SwitchOnwhere -2(:Sleep) means that Sleep never oc-curred (i.e., an o�ce is initially awake), we

can specify that whenever LightOn occurs,both the o�ce must be awake (no Sleep sincethe last Awake) and the switch must be on:2(LightOn! Awake ^ SwOn)To complete the implementation of a sin-gle o�ce, we compose a temperature-stableo�ce with an o�ce control. The result-ing o�ce process emits no events and ac-cepts only events EconomyMode(t) and Oc-cupantMode. The LOCAL combinator hidesall other events. Finally, multiple o�ces arecombined into an entire
oor of an o�cebuilding.
�o�cetemp-stable ����---

6 6
o�ce

o�cecontrol
DoorOpenSwitchOnDoorCloseLightOnLightO� SwitchO�

EconomyMode(t) OccupantMode
SetTemp(t) RequestTemp(t)

office:temperature_stable_office tso;office_control oc;LOCAL SwitchOn SwitchOff LightOn LightOffRequestTemp SetTemp DoorOpen DoorCloseIN tso || ocbuilding_floor:building_floor bf;office o;bf || oThe implementation above allows o�cesto be added one by one. The entire
oor iscommanded to be placed in economy modeand to be restored to occupant mode as awhole. However, while in economy mode,individual o�ces may temporarily revert tooccupant mode due to door activity, as de-scribed above.
View publication statsView publication stats

https://www.researchgate.net/publication/2762843

